首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While pyrolysis of a polysiloxane precursor in argon typically produces a black amorphous Si–O–C ceramic containing “free” carbon (sp2 carbon), pyrolyzing the same precursor in hydrogen leads to a white amorphous ceramic with a negligible amount of sp2 carbon and a considerable hydrogen content. 29Si magic‐angle‐spinning nuclear magnetic resonance (MAS NMR) spectroscopy confirms the existence of very similar bonding environments of Si atoms in the Si–O–C network for both samples. In addition, 1H NMR spectroscopic measurements on both samples reveal that the hydrogen atoms are bonded mainly to carbon. For the thermodynamic analysis, the enthalpies of formation with respect to the most stable components (SiO2, SiC, C) of the black‐and‐white Si–O–C samples obtained after the pyrolysis at 1100°C are determined using high‐temperature oxidative drop‐solution calorimetry in a molten oxide solvent. The white ceramic is 6 kJ/g‐atom more stable in enthalpy than the black one. Although the role of hydrogen in the thermodynamic stability of the white sample remains ambiguous, the thermodynamic findings and structural analysis suggest that the existence of sp2‐bonded carbon in the amorphous network of polymer derived Si–O–C ceramics does not provide additional thermodynamic stability to the ceramic.  相似文献   

2.
In this study, tetraethoxysilane (TEOS) and a metallocene polyethylene–octene elastomer (POE) were chosen as the ceramic precursor and the continuous phase, respectively, for the preparation of new hybrids by an in situ sol–gel process. To obtain a better hybrid, a maleic anhydride‐grafted polyethylene–octene elastomer (POE‐g‐MAH), used as the continuous phase, was also investigated. Characterizations of POE‐g‐MAH/SiO2 and POE/SiO2 hybrids were performed by Fourier transform infrared (FTIR) and 29Si solid‐state nuclear magnetic resonance (NMR) spectrometers, a differential scanning calorimeter (DSC), a thermogravimetry analyzer, and an Instron mechanical tester. The results showed that the POE‐g‐MAH/SiO2 hybrid could improve the properties of the POE/SiO2 hybrid because the interfacial force between the polymer matrix and the silica network was changed from hydrogen bonds into covalent Si? O? C bonds through dehydration of hydroxy groups in POE‐g‐MAH with residual silanol groups in the silica network. The existence of covalent Si? O? C bonds was proved by FTIR spectra. For the POE/SiO2 and POE‐g‐MAH/SiO2 hybrids, maximum values of the tensile strength and the glass transition temperature were found at 9 wt % SiO2 since a limited content of silica might be linked with the polymer chains through the covalent bond. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 966–972, 2003  相似文献   

3.
In this paper the dielectric properties of crack‐free, Bi12SiO20 thin films were investigated. The films were prepared on Pt/TiO2/SiO2/Si and corundum substrates using the sol–gel method. The formation of a pure Bi12SiO20 phase was observed at a temperature of 700°C. The Bi12SiO20 thin films, heat treated at 700°C for 1 h, had a dense microstructure with an average roughness (Ra) of 50 nm. The dielectric properties of the film were characterized by using both low‐ and microwave‐frequency measurement techniques. The low‐frequency measurements were conducted with a parallel capacitor configuration. The dielectric constant and dielectric losses were 44 and 7.5 × 10?3, respectively. The thin‐film dielectric properties at the microwave frequency were measured using the split‐post, dielectric resonator method (15 GHz) and the planar capacitor configuration (1–5 GHz). The dielectric constant and the dielectric losses measured at 15 GHz were 40 and 17 × 10?3, respectively, while the dielectric constant and the dielectric losses measured with the planar capacitor configuration were 39 and 65 × 10?3, respectively.  相似文献   

4.
This review describes our recent works on the preparation of Ni-alloy films deposited by electroless deposition as a diffusion barrier layer for ultra large-scale integration (ULSI) interconnects by using an all-wet process.In this process, we create a novel wet fabrication process including a self-assembled monolayer (SAM) as an attachment technique between diffusion barrier layer and a substrate. Our proposal process was applied to the substrates of SiO2/Si and both organic (methyl silsesquioxane) and inorganic (hydrogen silsesquioxane) low-k dielectrics. The key technique of this proposed process is using SAM as a catalyst trapping layer. The Ni-alloy films such as NiB were deposited on catalyzed SiO2 or low-k substrates. The electrolessly deposited NiB films were found to exhibit sufficient thermal stability and an acceptable barrier property for preventing Cu diffusion into the SiO2 and low-k dielectrics.  相似文献   

5.
Thin films of amorphous SiNH (a‐SiNH) and amorphous SiNOH (a‐SiNOH) synthesized by plasma‐enhanced chemical vapor deposition (PECVD) are used extensively in the semiconductor industry, but little is known regarding their thermodynamic stability, and there are several long‐term reliability issues for these materials. To address the stability issues, a detailed thermodynamic investigation has been conducted on a series of a‐SiNH, and a‐SiNOH dielectric films. High‐temperature oxidative drop‐solution calorimetry in molten sodium molybdate solvent at 1075 K was utilized to determine the formation enthalpies from the elements and from crystalline counterparts/gaseous products. Together with entropy data derived from cryogenic heat capacity measurements, we confirmed that the incorporation of more hydrogen and oxygen leads to more negative enthalpies and Gibbs free energies of formation from elements. Coupled with FTIR structural analysis, the thermochemical data suggest that the Si–H2 chain structure and Si–O–Si bonding configurations provide the system with extra thermodynamic stability. However, the Gibbs free energies of formation from crystalline constituents and gaseous products are either positive or nearly zero, indicating that these amorphous films are not stable against decomposition, which may cause problems in high‐temperature applications.  相似文献   

6.
Dielectric materials with lower permittivity (low k) are required for isolation to reduce the interconnect RC delay in deep submicron integrated circuit. In this work, carbon doped silicon oxide [SiO(C–H)] films are investigated as a potential low k material. The films were prepared by the radio frequency plasma enhanced chemical vapor deposition (PECVD) technique from trimethylsilane (C3H10Si or 3MS) in an oxygen (O2) environment. SiO(C–H) films deposited with O2 and 3MS flow rates of 100 sccm and 600 sccm, respectively have been previously found to produce dielectric constant as low as 2.9. This is attributed to the incorporation of carbon in the form of Si–CH3 bond, which has lower polarizability compared to the Si–O bonds that were replaced. In this work, these low k films were annealed at 400, 500, 600 and 700 °C in a N2 atmosphere for 30 min to determine the thermal stability of their properties. The films were characterized in terms of their thickness shrinkage, refractive indices, dielectric constants, infrared absorption, surface morphology and stress upon annealing. For annealing temperatures up to 500 °C, which is beyond the current highest processing temperature for back end of the line structure of around 450 °C, a slight decrease in the refractive indices and dielectric constants of the films are observed. The SiO(C–H) films also remain smooth and exhibit tensile stress with stress level that is within practical acceptable range. The results suggest that the SiO(C–H) films are thermally stable to be applied as low dielectric constant materials for deep submicron integrated circuit.  相似文献   

7.
The transparent hybrid material, HLP/SiO2, was prepared by an in situ sol–gel process of tetraethoxysilane (TEOS) at 30°C in the presence of hydroxy‐containing linear polyester (HLP) obtained by ring‐opening reaction of diglycidyl ether of bisphenol A (DGEBA) with adipic acid under the catalyzation of triphenylphosphine (TPP). The hetero‐associated hydrogen bonds between the HLP and the residual silanol of silica in the hybrids were investigated by FTIR spectroscopy. Upon heating the hybrid, the interfacial force between the HLP matrix and the silica network changed from hydrogen bonds into covalent Si—O—C bonds through dehydration of hydroxy groups in HLP with residual silanol groups in the silica network. The existence of covalent Si—O—C bonds was proved by solid‐state 29Si‐NMR spectra. Other properties such as tensile strength, glass transition temperature (Tg ), solubility, and thermal stability of the hybrids before and after heat treatment were studied in detail. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1179–1190, 2000  相似文献   

8.
Polymer dielectrics, with advanced dielectric properties and heat resistance, are critical for high‐temperature capacitors in various applications. However, the high performance of heat resistance and dielectric properties are quite difficult to achieve all together due to their mutual implication. Here, by intensively investigating the correlation between molecular structure and properties, polyimide dielectrics with i) enhanced dielectric constant by introducing sulfonyl group, ii) low dissipation factor by introducing flexible linkage, and iii) high Tg (glass transition temperature) by retaining an aromatic structure, are obtained. The sulfonyl‐containing polyimides with different flexible linkages exhibit simultaneously a high dielectric constant (4.50–5.98), low dissipation factor (0.00298–0.00426), and outstanding breakdown strength (most above 500 MV m?1), as well as superior heat resistance (Tg : 244–304 °C). Specifically, the polyimide (SPI‐1) with sulfonyl group in diamine moiety and para‐para linkage shows stable dielectric properties up to 150 °C, and the discharged energy density and charge–discharge efficiency can be as high as 7.04 J cm?3 and 91.3% at 500 MV m?1, respectively.  相似文献   

9.
This study presents a thermodynamic analysis to predict the type of initial, amorphous oxide overgrowth (i.e., am‐Al2O3 or am‐SiO2) on bare Al–Si alloy substrates. This analysis have taken into account the energies associated with both its interfaces (interface between the Al–Si alloy substrate and the thin oxide film and interface between the thin oxide film and vacuum) along with the bulk Gibbs free energy of oxide formation. This developed analysis is then applied for various parameters, such as, Si alloying element content at the substrate/oxide interface, the growth temperature, the oxide film thickness (up to 1 nm), and various low‐index crystallographic surfaces of the substrate. It is found that am‐SiO2 overgrowth is thermodynamically preferred for a combination of lower oxide film thickness, lower growth temperature, and lower Si alloying content at the alloy/oxide interface. This is because of the overcompensation of the lower energies of both the interfaces over the bulk Gibbs free energy. Furthermore, it is found that for all cases, am‐Al2O3 forms a more stable interface with Al–Si alloy than am‐SiO2.  相似文献   

10.
Complete solid solutions between Mg2SiO4 and LiMgPO4 are confirmed by the XRD results. The phase constitution of 0.5Mg2SiO4‐0.5LiMgPO4 is found to be dependent on firing temperature. The chemical compatibility between Mg2SiO4 and rutile phase at sintering temperature is modified by incorporating LiMgPO4. The microwave dielectric properties of (1?y)(0.5Mg2SiO4‐0.5LiMgPO4)‐yTiO2 (y = 0–0.3) composite ceramics have been investigated. The optimized microwave dielectric properties for 0.35Mg2SiO4‐0.35LiMgPO4‐0.3TiO2 ceramics sintered at 1050°C show low dielectric constant (11.4), high‐quality factor (31 800 GHz), and low‐temperature coefficient of resonant frequency (?4 ppm/°C).  相似文献   

11.
In the present study, fumed silica (SiO2) nanoparticle reinforced poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) blend nanocomposite films were prepared via a simple solution‐blending technique. Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), X‐ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to elucidate the successful incorporation of SiO2 nanoparticles in the PVA/PVP blend matrix. A thermogravimetric analyzer was used to evaluate the thermal stability of the nanocomposites. The dielectric properties such as dielectric constant (?) and dielectric loss (tan δ) of the PVA/PVP/SiO2 nanocomposite films were evaluated in the broadband frequency range of 10?2 Hz to 20 MHz and for temperatures in the range 40–150 °C. The FTIR and UV–vis spectroscopy results implied the presence of hydrogen bonding interaction between SiO2 and the PVA/PVP blend matrix. The XRD and SEM results revealed that SiO2 nanoparticles were uniformly dispersed in the PVA/PVP blend matrix. The dielectric property analysis revealed that the dielectric constant values of the nanocomposites are higher than those of PVA/PVP blends. The maximum dielectric constant and the dielectric loss were 125 (10?2 Hz, 150 °C) and 1.1 (10?2 Hz, 70 °C), respectively, for PVA/PVP/SiO2 nanocomposites with 25 wt % SiO2 content. These results enable the preparation of dielectric nanocomposites using a facile solution‐casting method that exhibit the desirable dielectric performance for flexible organic electronics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44427.  相似文献   

12.
The self‐reactive quenching technology, which combines flame thermal spraying technology, self‐propagating high‐temperature synthesis (SHS), and rapid solidification, is a new method for preparation of hollow microspheres. Based on this, the effect of heat released by different exothermic systems on preparation of hollow ceramic microspheres was studied. The results show that for low‐exothermic system Si‐Sucrose‐NH4Cl, the self‐propagating reactions cannot occur, and the quenching products are Si microspheres with porous structure. For the moderate exothermic system Al–SiO2‐Sucrose, the quenching products consist of some grains, which are hollow spherical or nearly spherical particles and irregular powders. Formation of Al2O3–Si indicates possible occurrence of SHS reactions. Meanwhile, for high‐exothermic system Al–Cr2O3‐Sucrose‐Si‐Epoxy Resin, the quenching products consist of internal hollow spherical grains and irregular‐shaped porous particles; the phase composition mainly contains Al2O3, Cr3C2, Cr7C3, Cr3Si, and mullite, showing completeness of SHS reactions. The higher the adiabatic combustion temperature of the system is, the more heat it releases is higher, and the ceramic droplets form easilier.  相似文献   

13.
The shrinkage of the devices and wiring dimensions in the ULSI chips is associated with an increased resistance of the interconnect metallization and increased interlevel and intralevel capacitances, causing corresponding longer signal delays. Low dielectric constant (k) insulators, with k significantly lower than that of presently used SiO2 are needed for reducing these capacitances and improving the switching performances of future ULSI circuits. Integration of low-k insulators in the ULSI circuits will also reduce the power required to operate them. Diamond-like carbon (DLC) has found a variety of applications based on its attractive mechanical, tribological, optical and chemical resistance properties. The films are also dielectrics whose electrical resistivities can reach values of 1016 Ω-cm at low fields. The DLC-type materials are attractive dielectrics because of their isotropic properties and the ability to deposit them by plasma assisted CVD techniques. However, the amorphous carbon materials with diamond-like properties are characterized by dielectric constants that are not lower than that of SiO2 (k=4). It was found that, by adjusting the deposition conditions of plasma deposited hydrogenated DLC (a-C:H), it is possible to reduce its dielectric constant to values between >3.3 and 2.7. Incorporation of the low-k materials in the ULSI structures imposes a significant number of requirements that they have to satisfy, among them stability at the processing temperature of 400°C. While DLC films having dielectric constants k>3.3 appeared to be stable to anneals of 4 h at 400°C in inert ambiance, the thermal stability decreased with decreasing dielectric constant. Incorporation of fluorine in FDLC films produces a material of apparently higher thermal stability and further reduced dielectric constants, to values even lower then 2.4. The as-deposited low-k DLC or FDLC films may be thermally stabilized, in terms of dimensional stability and material loss, by an initial anneal, that also causes a significant reduction in the intrinsic film stress, typical of DLC type materials. The integration of the low-k films in the interconnect structures further requires good adhesion with thermally stable interfaces to materials in contact with the low-k dielectric. Such materials may include processing aids and structural components such as silicon nitride or oxide, and wire cladding metallurgy. The paper discusses the preparation and characterization of the low-k DLC and FDLC films, approaches for their thermal stabilization and evaluation of integration issues.  相似文献   

14.
A series of fluorine‐containing bismaleimide (FBMI) monomers are synthesized by a 3‐step reaction for using as the applications of low‐k materials. The synthesized FBMI monomers are characterized by the 1H, 13C, 19F nuclear magnetic resonance (NMR) spectroscopy and element analysis. These FBMI monomers react with free radical initiator or self‐cure to prepare FBMI‐polymers. All the self‐curing FBMI resins have the glass transition temperatures (Tg) in the range of 128–141°C and show the 5% weight loss temperatures (T5%) of 235–293°C in nitrogen atmosphere. The higher heat resistance of self‐curing FBMI resin relative to FBMI‐homopolymer is due to its higher crosslinking density. The FBMI resins exhibit improved dielectric properties as compared with commercial bismaleimide (BMI) resins with the dielectric constants (Dk) lower than 2.49, which is related to the low polarizability of the C? F bond and the large free volume of CF3 groups in the polymers. Besides, the flame retardancy of all these FBMI resins could be enhanced via the introduction of Br‐atom. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
The structure and properties of polymer‐derived Si–(B–)O–C glasses have been shown to be significantly influenced by the boron content and pyrolysis temperature. This work determined the impact of these two parameters on the thermodynamic stability of these glasses. High‐temperature oxide melt solution calorimetry was performed on a series of amorphous samples, with varying boron contents (0–7.7 at.%), obtained by pyrolysis of precursors made by a sol–gel technique. Thermodynamic analysis of the calorimetric results demonstrated that at a constant pyrolysis temperature, adding boron makes the materials energetically less stable. While the B‐containing glasses pyrolyzed at 1000°C were energetically less stable than the competitive crystalline components, increasing the pyrolysis temperature to 1200°C led to their enthalpic stability. 29Si and 11B MAS nuclear magnetic resonance (NMR) spectroscopy measurements on selected samples confirmed a decrease in the concentrations of mixed Si‐centered SOiC4?i and B‐centered BOjC3?j bonds at the expense of formation of SiO4 and B(OSi)3 species (indicating a tendency toward phase separation) when the boron content and pyrolysis temperature increased. In light of the findings from calorimetry and NMR spectroscopy, we propose a structure–energetic relationship in Si–(B–)O–C glasses.  相似文献   

16.
The microstructure, phase structure, ferroelectric, and dielectric properties of (1?x)Bi0.5Na0.5TiO3xNaNbO3 [(1?x)BNT‐xNN] ceramics conventionally sintered in the temperature range of 1080°C–1120°C were investigated as a candidate for capacitor dielectrics with wide temperature stability. Perovskite phase with no secondary impurity was observed by XRD measurement. With increasing NN content, (1?x)BNT‐xNN was found to gradually transform from ferroelectric (x = 0–0.05) to relaxor (x = 0.10–0.20) and then to paraelectric state (x = 0.25–0.35) at room temperature, indicated by PIE loops analysis, associated with greatly enhanced dielectric temperature stability. For the samples with x = 0.25–0.35, the temperature coefficient of capacitance (TCC) was found <11% in an ultra‐wide temperature range of ?60°C–400°C with moderate dielectric constant and low dielectric loss, promising for temperature stable capacitor applications.  相似文献   

17.
The dependence of silicon oxycarbides' chemical composition and molecular structure on their reaction conditions was tested by varying the atmosphere under which pyrolysis was performed. To obtain the silicon oxycarbides, densely cross‐linked silicone resin particles with an averaged diameter of 2 μm were pyrolyzed in various atmospheres of H2, Ar, and CO2, in the temperature range 700°C–1100°C. The residual mass of resin after pyrolysis was almost constant at 700°C, although their apparent colors varied distinctly. The sample obtained from the H2 atmosphere was white, whereas that obtained from the CO2 atmosphere was dark brown. Fourier‐transform infrared (FT‐IR) spectra of the residues suggested that the Si–O–Si network evolution was accelerated in the CO2 atmosphere. Beyond 800°C, the chemical compositions of the compounds obtained from a H2 atmosphere increasingly approached near‐stoichiometric SiO2xSiC composition with increasing the pyrolysis temperature. Compounds from a CO2 atmosphere approached a composition of SiO2xC with no free SiC as the pyrolysis temperature increased. In the products from an Ar atmosphere, SiO2xSiC–yC compositions were typically obtained. The observed effects of the pyrolysis atmosphere on the resulting chemical compositions were analyzed in terms of thermodynamic calculations. Electron spin resonance (ESR) spectra revealed broad and intense signals from products obtained from either Ar or CO2. Estimating from the signal intensity, the residual spin concentrations were in the range 1018–1019 g?1. Meanwhile, the spectra from the samples obtained in H2 showed weak and sharp signals with estimated spin concentrations ranging from 1016–1017 g?1. This signal attenuation may have been due to the hydrogen capping of dangling bond formed during pyrolysis.  相似文献   

18.
Phase equilibria of the PbO–SiO2 system have been established for a wide range of compositions: (i) liquid in equilibrium with silica polymorphs (quartz, tridymite, and cristobalite) between 740°C and 1580°C, at 60‐90 mol% SiO2; (ii) with lead silicates (PbSiO3, Pb2SiO4, and Pb11Si3O17) and lead oxide (PbO) between 700°C and 810°C. A high‐temperature equilibration/quenching/electron probe X‐ray microanalysis (EPMA) technique has been used to accurately determine the compositions of the phases in equilibrium in the system. Significantly, no liquid immiscibility has been found in the high‐silica range, and the liquidus in this high‐silica region has been accurately measured. The phase equilibria information in the PbO–SiO2 system is of practical importance for the improvement of the existing thermodynamic database of lead‐containing slag systems (Pb–Zn–Fe–Cu–Si–Ca–Al–Mg–O).  相似文献   

19.
Nonbonded and chemically bonded organic–inorganic composite materials, ABS/SiO2 and ABS Si(OCH3)3/SiO2, were prepared by the sol‐gel processing of tetraethoxysilane (TEOS) in the presence of ABS and trimethoxysilyl functionalized ABS, ABS Si(OCH3)3, under the catalization of NH4F. The ABS Si(OCH3)3 was obtained by oxidizing the cyano group in ABS with hydrogen peroxide, then subsequently underwent ring‐opening reaction with 3‐glycidoxypropyltrimethoxysilane (GPTS). The ABS Si(OCH3)3/TEOS sol‐gel liquid solution system, in which the ABS chains formed the covalent bonds with silica network and helped fix the polymer chains in the silica network, had a shorter gelation time than that of the ABS/TEOS system, which linked ABS chains to the silica network only by hydrogen bonding the cyano groups in ABS to the silanol groups. The morphology and properties of composite were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), tensile tests, and thermogravimetry. It was found that the composite prepared from ABS Si(OCH3)3 had higher tensile strength, glass transition point (Tg), thermal stability, and more homogeneous morphology because of the existence of the covalent bond between ABS chains and silica network that increased the compatibility between the organic and inorganic phases. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 275–283, 2000  相似文献   

20.
Polyimide/silica–titania (PI/SiO2–TiO2) hybrid films were prepared via an in situ sol–gel process. The PI precursor, poly(amic acid) (PAA), which contains 2,2'‐bis[4‐(4‐aminophenoxy)‐phenyl]propane (p‐BAPPP), 3,3',4,4'‐ benzophenetetracarboxylic anhydride (BTDA) and 3‐aminopropyltrimethoxysilane (APrTMOS), was first synthesized; this was followed by the addition of phenyltrimethoxysilane (PTMS) and/or tetraethyl orthotitanate (Ti(OEt)4) to fabricate PI/SiO2–TiO2 films. The relative content of SiO2 to TiO2 has remarkable effects on the crosslink structure and resultant properties of the hybrids. XPS results confirm that the amount of Si on the surface of the hybrids is higher than that in the bulk. The distribution of Ti in the hybrid films is contrary to the above trend because of the formation of three‐dimensional Si? O? Si, Si? O? Ti, and Ti? O? Ti networks. The SiO2 content of the hybrids containing only silica significantly affects their refractive index, contact angle, and dielectric constant. The films with added PTMS show higher contact angles than pure PI because nonpolar segments, ? C2H6 or benzene groups, tend to distribute on the surface. Upon the addition of (Ti(OEt)4), some hydrophilic segments on the surface of the hybrids are induced because of the formation of a crosslinked structure. The denser crosslinked molecular structure, and consequently lower CTE and higher Tg are obtained from hybrids containing more TiO2. By comparing the above properties and flexibility, the best composition of metal oxides (SiO2/TiO2) in hybrids is 20/80. That is, an optimum ratio of metal oxides in PI hybrids induces superior properties for advanced practical applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号