首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAX 相陶瓷综合了陶瓷材料和金属材料的诸多优点,包括低密度、高模量、良好 的导电/导热性能、优异的抗热震性能、抗损伤性能以及优良的抗高温氧化性能等,已经获得研 究者的广泛关注。近年来,带有磁性的 MAX 相陶瓷相继被发现并被成功制备。本文结合国内 外在该领域的发展现状,重点介绍当前已被发现磁性 MAX 相陶瓷的合成和磁性特性。  相似文献   

2.
Herein we report on the synthesis of a metastable (Cr,Y)2AlC MAX phase solid solution by co-sputtering from a composite Cr–Al–C and elemental Y target, at room temperature, followed by annealing. However, direct high-temperature synthesis resulted in multiphase films, as evidenced by X-ray diffraction analyses, room-temperature depositions, followed by annealing to 760°C led to the formation of phase pure (Cr,Y)2AlC by diffusion. Higher annealing temperatures caused a decomposition of the metastable phase into Cr2AlC, Y5Al3, and Cr-carbides. In contrast to pure Cr2AlC, the Y-containing phase crystallizes directly in the MAX phase structure instead of first forming a disordered solid solution. Furthermore, the crystallization temperature was shown to be Y-content dependent and was increased by ∼200°C for 5 at.% Y compared to Cr2AlC. Calculations predicting the metastable phase formation of (Cr,Y)2AlC and its decomposition are in excellent agreement with the experimental findings.  相似文献   

3.
Cr2AlC foams have been processed for the first time containing low (35 vol%), intermediate (53 vol%), and high (75 vol%) content of porosity and three ranges of pore size, 90‐180 μm, 180‐250 μm, and 250‐400 μm. Sacrificial template technique was used as the processing method, utilizing NH4HCO3 as a temporary pore former. Cr2AlC foams exhibited negligible oxidation up to 800°C and excellent response up to 1300°C due to the in‐situ formation of an outer thin continuous protective layer of α‐Al2O3. The in‐situ α‐Al2O3 protective layer covered seamlessly all the external surface of the pores, even when they present sharp angles and tight corners, reducing significantly the further oxidation of the foams. The compressive strength of the foams was 73 and 13 MPa for 53 vol% and 75 vol% porosity, respectively, which increased up to 128 and 24 MPa after their oxidation at 1200°C for 1 hour. The increase in the compressive strength after the oxidation was caused by the switch from inter‐ to transgranular fracture mode. According to the excellent high‐temperature response, heat exchangers and catalyst supports are the potential application of these foams.  相似文献   

4.
Dense Cr2AlC materials were tested under a gradient loading for the first time using a burner rig. The severe thermal cycling conditions consist of 500 short cycles at 1200°C, with an accumulative time at the maximal temperature of more than 29 hours. The samples showed no visible damage under these conditions due to the formation of an outer protective α‐Al2O3 layer, which shows a strong adhesion with the Cr2AlC substrate. No cracks, delamination or damage were observed at the interface between the different layers. This excellent response under cyclic loading shows the excellent potential of Cr2AlC compounds for high‐temperature applications.  相似文献   

5.
6.
Ti3AlC2 and Ti3Al0.8Sn0.2C2 MAX phase powders are densified using Spark Plasma Sintering (SPS) technique to obtain dense bulk materials. Oxidation tests are then performed over the temperature range 800°C-1000°C under synthetic air on the two different materials in order to compare their oxidation resistance. It is demonstrated that, in the case of the Ti3Al0.8Sn0.2C2 solid solution, the oxide layers consist in TiO2, Al2O3, and SnO2. The presence of Sn atoms in the A planes of the solid solution leads to an easy diffusion of Sn out of the MAX phase which promote the formation of the nonprotective and fast growing SnO2 oxide. Moreover, the small Al/Ti atom's ratio promotes the growth of a nonprotective rutile-TiO2 scale as well. In the case of the Ti3AlC2 MAX phase, the oxide layer consists in a protective alumina scale; a few TiO2 grains being observed on the top of the Al2O3 layer. The parabolic oxidation rate constants are about 3 orders of magnitude smaller for Ti3AlC2 compared to Ti3Al0.8Sn0.2C2.  相似文献   

7.
We report on the oxidation behaviour of V2AlC coatings up to 800 °C, in air. The coatings were deposited at 580 °C using magnetron sputtering from a powder metallurgical composite V2AlC target and were subsequently oxidised for 5, 15 and 30 min. The microstructural evolution of the samples was investigated, and X-ray diffraction patterns were collected to track the formation of oxides. The first indications of oxidation appear after just 15 min at 500 °C, as V-based oxides grew on the surface of the coatings. Later, the presence of mostly V-based oxides and ternary (V, Al)-oxides was observed starting after 5 min at 600 °C. Further analyses confirmed outward diffusion of V and inward diffusion of O, while Al tends to sublimate. α-Al2O3 was only indexed after 5 min at 800 °C. Ex-situ electrical resistivity measurements allowed tracking the oxidation progress of the V2AlC coating.  相似文献   

8.
The processing and characterization of laminates based on Ti2AlC MAX phase, as matrix, and triaxial alumina braids, as reinforcing phase, are presented. Ti2AlC powders with a mean particle size below 1 µm are synthesized, while commercial 3M Nextel 610 alumina fibers are braided in a three-stage process consisting of spooling, braiding with an angle of 0° and ±60° and the separation to single-layer fabric. The laminates are processed by layer-by-layer stacking, where 3 two-dimensional alumina braids are interleaved between Ti2AlC layers, followed by full densification using a Field-Assisted Sintering Technology/Spark Plasma Sintering. The multifunctional response of the laminates, as well as for the monolithic Ti2AlC, is evaluated, in particular, the thermal and electrical conductivity, the oxidation resistance, and the mechanical response. The laminates exhibit an anisotropic thermal and electrical behavior, and an excellent oxidation resistance at 1200℃ in air for a week. A relatively lower characteristic biaxial strength and Weibull modulus (i.e., σ0 = 590 MPa and m = 9) for the laminate compared to the high values measured in the monolithic Ti2AlC (i.e., σ0 = 790 MPa and m = 29) indicates the need but also the potential of optimizing MAX-phase layered structures for multifunctional performance.  相似文献   

9.
《Ceramics International》2023,49(1):168-178
Since the synthesis of non-oxidized ceramic and alloy powders requires both high temperature and oxygen insulation conditions, here we demonstrate a cost-efficient molten salt sealing/shielded synthesis method with dynamic gas tightness. Compared to conventional synthesis method, it can prevent the loss of reaction materials at high temperature, cut off the connection between reacting material and outside air, and does not require long-time ball milling mixing treatment or provision of applied pressing before or during heating. Only low-cost salts (e.g., NaCl, KCl), a few minutes of raw material mixing, and regular heating molds are required to obtain high-purity (>96 wt%), micron-sized Ti3AlC2 and Ti3SiC2 powders with narrow size distribution, which significantly decreased the complexity and production costs in the synthesis process. The effect of temperature and raw material content on the products were investigated. The mechanism of diffusion reaction between reactants in molten salt environment was analyzed. The new method developed here was also applicable to Ti2AlC, V2AlC and Cr2AlC MAX phases, as well as provided new ideas for the preparation of other MXenes precursors with certain stoichiometric ratios, air-sensitive materials and nanopowders.  相似文献   

10.
Highly pure Cr2AlC powders were synthesized and deposited for the first time by cold spray technology on stainless steel substrates. The Cr2AlC coatings were relative dense, up to 91%, and present high purity (> 98%) since only small traces of Cr2Al, Al2O3 and Cr2O3 were detected by XRD, SEM and EDX. The microstructure of the coatings is homogeneous, although some preferential orientation in the basal plane was observed by XRD pole figures. The adhesion between the coating and the substrate is strong, and compressive residual stresses up to 300 MPa in the coating were determined by XRD. Furthermore, a conventional YSZ Thermal Barrier Coating (TBCs) was deposited by Atmospheric Plasma Spray (APS) on top of the cold sprayed Cr2AlC coating in order to demonstrate the processing feasibility of Cr2AlC MAX phases as a bond-coat layer.  相似文献   

11.
《Ceramics International》2022,48(18):26618-26628
Oxidation and hot corrosion behaviours of Ti3SiC2, Ti2AlC and Cr2AlC at 750 °C were investigated in this work. Ti3SiC2 and Ti2AlC showed a linear increase in mass gain and a relatively poor oxidation resistance. This might be attributed to the porous TiO2 scale. A dense α-Al2O3 layer was formed during the oxidation test. Cr2AlC exhibited the best oxidation resistance. This dense oxide scale can effectively isolate the substrate from contact with oxygen leading to excellent oxidation resistance. In contrast to the oxidation test, Ti3SiC2 and Ti2AlC showed relatively better resistance to hot corrosion, while Cr2AlC showed inferior resistance to NaCl introduced hot corrosion. The hot corrosion mechanism of the MAX phases was analyzed. Due to the formation of Na2TiO3, Ti containing MAX phases showed a continuous increase in the mass gain. The corrosion products of Cr2AlC were Al2O3, Cr2O3 and Na2CrO4. However, due to the volatilization of Na2CrO4, Cr2AlC showed a mass loss during the hot corrosion test. The chemical reaction process of the MAX phase was also analyzed.  相似文献   

12.
The creep behaviours of the dense and porous Cr2AlC ceramics were investigated, being the first study on creep behaviour of not only Cr2AlC but also porous MAX phase. Creep rates of rather dense (2% of porosity) and porous Cr2AlC (53% and 75%) were measured in the temperature range 1073–1473 K during heating and subsequent cooling after high temperature exposure. The compressive creep tests were performed under stress range of 1–12 MPa. Creep rates of porous Cr2AlC were higher than the ones of the rather dense material at lower temperature but lower at higher temperature, which can be attributed to effects of the formed oxide scale and some crack healing associated with the scale formation. A comparison of the creep rates with other refractory materials reveals favourable properties of the porous Cr2AlC.  相似文献   

13.
MAX phase solid solutions physical and mechanical properties may be tuned via changes in composition, giving them a range of possible technical applications. In the present study, we extend the MAX phase family by synthesizing (Zr1?xTix)3AlC2 quaternary MAX phases and investigating their mechanical properties using density functional theory (DFT). The experimentally determined lattice parameters are in good agreement with the lattice parameters derived by DFT and deviate <0.5% from Vegard's law. Ti3AlC2 has a higher Vickers hardness as compared to Zr3AlC2, in agreement with the available experimental data.  相似文献   

14.
Cr2AlC layers with thickness up to 100 µm were deposited by high-velocity-atmospheric plasma spray (HV-APS) on Inconel 738 substrates to analyze the potential of MAX phases as bond coat in thermal barrier coating systems (TBCs). The deposited Cr2AlC layers showed high purity with theoretical densities up to 93%, although some secondary phases were detected after the deposition process. On top of this MAX phase layer, a porous yttria-stabilized zirconia (YSZ) was deposited by atmospheric plasma spraying. The system was tested under realistic thermal loading conditions using a burner rig facility, achieving surface and substrate temperatures of 1400°C and 1050°C, respectively. The system failed after 745 cycles mainly for three reasons: (i) open porosity of the bond coat layer, (ii) oxidation of secondary phases, and (iii) inter-diffusion. Nevertheless, these results show a high potential of Cr2AlC and other Al-based MAX phases as bond coat material for high-temperature applications. Furthermore, future challenges to transfer MAX phases as eventual bond coat or protective layer are discussed.  相似文献   

15.
Alumina forming, oxidation and thermal shock resistant MAX phases are of a high interest for high temperature applications. Herein we report, on bonding and resulting interactions between a Ni-based superalloy, NSA, and two alumina forming MAX phases. The diffusion couples Cr2AlC/Inconel-718/Ti2AlC were assembled and heated to 1000 or 1100 °C in a vacuum hot press under loads corresponding to stresses of either 2 MPa or 20 MPa. The resulting interfaces were examined using X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Good bonding between Cr2AlC and NSA was achieved after hot pressing at 1000 °C and a contact pressure of only 2 MPa; in the case of Ti2AlC a higher temperature (1100 °C) and pressure (20 MPa) were needed. In both cases, a diffusion bond, in which mainly Ni and Cr out diffused from the NSA into the MAX phase and a concomittant out diffusion of Al from the latter, was realized with no evidence of interfacial damage or cracking after cooling to room temperature. The reactions paths were determined to be: Cr2AlC/Cr7C3/Cr7C3,β-NiAl/α-Cr(Mo)/NSA and Ti2AlC/Ti2AlC,Ti3NiAl2C/β-NiAl/α-Cr(Mo)/NSA. Twenty thermal cycles from room temperature to 1000 °C showed that Ti2AlC is a poor oxidation barrier for Inconel-718. However, in the case of Cr2AlC no cracks, delamination nor surface degradation was observed, suggesting that this material could be used to protect Inconel-718 from oxidation.  相似文献   

16.
三元层状可加工导电陶瓷是一类键合具有明显各向异性的层状碳化物或氮化物,它通常又被称为MAX相陶瓷。MAX相陶瓷具有优良的可加工性,良好的导电、导热能力,可观的高温强度,同时还具有良好的热稳定性、抗氧化性、抗热震性和耐腐蚀性能。本文介绍了MAX相陶瓷的结构、性能以及制备方法和应用前景。  相似文献   

17.
Highly textured Ti2AlC and Ti3AlC2 ceramics were successfully fabricated by a two-step fabrication process, and the Lotgering orientation factors for {00l} planes of textured Ti2AlC and Ti3AlC2 were calculated as 0.82 and 0.71, respectively. The effect of texturing was evaluated in terms of elastic modulus and hardness by macro- and micro-indentation. Moreover, the oxidation behavior of the MAX phases was investigated at 1300 °C in air, revealing that the oxidation was markedly anisotropic, where the textured side surface exhibited much better oxidation resistance, resulting from the rapid diffusion of Al element within its basal planes to form a protective Al2O3 scale on it. Furthermore, Ti2AlC had larger difference regarding oxidation behavior between the top and side surface than Ti3AlC2, correlated to its higher Al ratio, leading to higher texturing degree and more diffusion pathways to the outer surface to produce an Al2O3 layer already at the initial oxidation stage.  相似文献   

18.
《Ceramics International》2022,48(22):33151-33159
The thermal stability and selective nitridation of Cr2AlC under a high–temperature nitrogen atmosphere were studied. Cr2AlC began to decompose beyond 1073 K in N2, and the activation energy was estimated to be 108.93 kJ·mol?1. Initially, the selective nitridation led to the generation of an AlN layer, which shielded the underlying Cr2AlC and the process was dominated by a surface reaction. The final products were AlN, Cr7C3 and Cr3C2, and the weaker Cr–Al bonds in Cr2AlC facilitated the rapid diffusion of aluminum from the interior outwards. As the reaction proceeded, micropores were observed on the grain surface, as well as a loose structure, which facilitated the diffusion of N2 and thus accelerated the reaction. Finally, the intensive reaction involving Cr2AlC and N2 could be attributed to the gas diffusion channels caused by improved temperature and continuous escape of vaporized aluminum.  相似文献   

19.
《Ceramics International》2022,48(18):26063-26071
In this study, thick Cr2AlC coatings were first synthesized via plasma spraying of Cr3C2–Al–Cr agglomerated powders and post annealing. The microstructure evolution and mechanical properties of the Cr2AlC coatings annealed at 500–1000 °C were investigated. The as-sprayed coatings exhibited a lamellar structure, primarily consisting of Cr2AlC, Cr7C3, Cr23C6, and (Cr, Al)Cx solid solutions. The short residence time during spraying led to incomplete reactions in the Cr3C2@Al–Cr agglomerates, resulting in the formation of (Cr, Al)Cx. Post annealing provided sufficient energy for the transition of (Cr, Al)Cx → Cr2AlC. With an increase in the annealing temperature (<900 °C), gradual transition of the (Cr, Al)Cx phase led to a slight increase in the Cr2AlC content, and thus, the as-annealed coatings maintained high hardness (>1000 HV0.2) with improved fracture toughness. Higher annealing temperatures (>900 °C) promoted clear enhancement of the Cr2AlC content, thus reducing the coating hardness. The transition phase (Cr, Al)Cx and high temperature annealing were the primary factors to promoting the formation of the Cr2AlC phase in sprayed coatings. This study indicates that the Cr3C2@Al–Cr agglomerates can be effective alternatives to expensive MAX phase powders as feedstock for plasma spraying of Cr2AlC coatings.  相似文献   

20.
Ti2AlN MAX phase with a hexagonal crystal structure exhibits great potential as structural material for operation under harsh environments due to its excellent mechanical performance. For a reliable application, a comprehensive understanding of the mechanical behavior, and in particular of the anisotropic properties is needed. Thus, in this study, we combined nanoindentation and electron-backscatter diffraction experiments to correlate elastic modulus and hardness of Ti2AlN to the crystallographic orientation. We used two different modeling approaches to better understand, validate, and in the long run to predict the anisotropic mechanical behavior of MAX phase materials. While we observed consistent trends in both experiments and modeling, elastic modulus and hardness showed different dependencies on the crystal orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号