首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2022,48(16):22967-22974
A novel single-source precursor was synthesized to prepare HfCxN1-x/SiC multiphase ceramics by using hafnium chloride (HfCl4), diallylamine (DAA) and polycarbosilane (PCS). We conducted an investigation of the synthesis process, polymer-to-ceramic conversion, as well as the microstructure and phase evolution of HfCxN1-x/SiC multiphase ceramics with different levels of SiC content. The results showed that the core-shell particles of HfCxN1-x-carbon were embedded homogeneously in the β-SiC matrix which is beneficial for preventing grain growth and improving oxidation resistance. Based on data from oxidation tests, the ceramics improved the oxidation temperature and remained stable at a high temperature (1500 °C) with oxidation layer formation on the surface. Due to the highly cross-linked structure without oxygen, high ceramic yield, homogeneous composition and excellent oxidation resistance of the pyrolysis product, the as-prepared precursor is a promising material for making high-performance composite ceramics.  相似文献   

2.
(1?x)Bi1/2Na1/2TiO3xPbMg1/3Nb2/3O3[(1?x)BNT‐xPMN] ceramics have been fabricated via a conventional solid‐state method for compositions x ≤ 0.3. The microstructure, phase structure, ferroelectric, and dielectric properties of ceramics were systematically studied as high‐temperature capacitor materials. XRD pattern certified perovskite phase with no secondary phase in all compositions. As PMN concentration increased, the phase of (1?x)BNT‐xPMN ceramics transformed from ferroelectric to relaxor gradually at room temperature, with prominent enhancement of dielectric temperature stability. For the composition x = 0.2, the temperature coefficient of capacitance (TCC) was <15% in a wide temperature range from 56 to 350°C with high relative permittivity (>3300) and low dielectric loss (<0.02) at 150°C, which indicated promising future for (1?x)BNT‐xPMN system as high‐temperature stable capacitor materials.  相似文献   

3.
Effects of postdensification annealing upon microstructures and microwave dielectric characteristics in Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 (x = 0, 0.1, 0.2, and 0.3) complex perovskite ceramics have been investigated. Long‐time annealing at temperatures below the order–disorder transition temperature enhances the cation ordering degree and promotes the ordering domain growth. The most significant improvement of Qf value is obtained together with the suppressed temperature coefficient of resonant frequency in the samples annealed at 1400°C for 12 h, while the dielectric constant decreases slightly. The Qf value of ceramics annealed at 1400°C mainly attributes to the enhanced cation ordering degree, because their low‐energy domain boundaries are not detrimental to the Qf value. As the annealing temperature increases close to the transition temperature, coarse ordering domains with high‐energy boundaries are formed, and then the Qf value steadily decreases because of the inferior domain structure, even the cation ordering degree increases. The microwave dielectric characteristics of Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 ceramics are affected by the common function of ordering degree and domain structure. The best combination of microwave dielectric characteristics is obtained in the composition of x = 0.3 after annealing at 1400°C for 12 h: εr = 33.2, Qf = 117 200 GHz, and τf = 8.6 ppm/°C.  相似文献   

4.
La1‐xZnxTiNbO6‐x/2 (LZTN‐x) ceramics were prepared via a conventional solid‐state reaction route. The phase, microstructure, sintering behavior, and microwave dielectric properties have been systematically studied. The substitution of a small amount of Zn2+ for La3+ was found to effectively promote the sintering process of LTN ceramics. The corresponding sintering mechanism was believed to result from the formation of the lattice distortion and oxygen vacancies by means of comparative studies on La‐deficient LTN ceramics and 0.5 mol% ZnO added LTN ceramics (LTN+0.005ZnO). The resultant microwave dielectric properties of LTN ceramics were closely correlated with the sample density, compositions, and especially with the phase structure at room temperature which depended on the orthorhombic‐monoclinic phase transition temperature and the sintering temperature. A single orthorhombic LZTN‐0.03 ceramic sintered at 1200°C was achieved with good microwave dielectric properties of εr~63, Q×f~9600 GHz (@4.77 GHz) and τf ~105 ppm/°C. By comparison, a relatively high Q × f~80995 GHz (@7.40 GHz) together with εr~23, and τf ~?56 ppm/°C was obtained in monoclinic LTN+0.005ZnO ceramics sintered at 1350°C.  相似文献   

5.
In this paper, the Li2/3(1?x)Sn1/3(1?x)MgxO (LSMxO) ceramic systems were prepared by solid‐state reaction using novel atmosphere‐controlled sintering (x = 0‐4/7). Pure Li2SnO3 was observed for x = 0, the Li2Mg3SnO6 and Li2SnO3 coexisted for x = 1/7, and the coexistence of three kinds of phases was detected for x = 1/5 and 1/4, including Li4MgSn2O7 impurity phase. Pure Li2Mg3SnO6‐like phase with cubic rock salt structure in Fm‐3m space group was obtained in the range of 1/3‐4/7. All samples showed well‐dense and smooth microstructures. The microwave dielectric properties highly depended on the phase composition, bond valence, FWHM of Raman spectrum, Raman shift, average grain sizes, and octahedral distortion. The LSMxO ceramics sintered at 1250°C for 5 hours possessed excellent comprehensive properties of εr = 15.43, Q×f = 80 902 GHz and τf = +5.61 ppm/°C for x = 1/7. Typically, the LSMxO ceramics sintered at 1350°C for 5 hours showed a maximum Q × f of 168 330 GHz for x = 1/2.  相似文献   

6.
To tailor a new electromagnetic wave (EMW) absorbing material with lower reflection coefficient (RC) and larger operating frequency band, the CVD Si3N4–SiCN composite ceramics were prepared from SiCl4–NH3–C3H6–H2–Ar system and then annealed at the temperatures of 1400–1700°C in N2 atmosphere. Effect of the annealing temperatures on the microstructure, phase composition, permittivity, and microwave‐absorbing properties of the ceramic were investigated. Results showed that the CVD Si3N4–SiCN ceramics gradually crystallized into nanosized SiC grains, Si3N4 grains and graphite (T ≤ 1600°C), and then the grains grew up at T = 1700°C. The permittivity, dielectric loss, and electrical conductivity of as‐annealed CVD Si3N4–SiCN ceramics (T ≤ 1600°C) increased firstly due to the formation of conductivity and polarity network and the increase in nanograin boundary, and then decreased at 1700°C because of the growth of nanograins and the disappearance of nanograin boundary. The minimal RC and effective absorption bandwidth of the as‐annealed CVD Si3N4–SiCN ceramic at 1600°C was ?41.67 dB at the thickness of 2.55 mm and 3.95 GHz at the thickness of 3.05 mm, respectively, demonstrating that the totally crystallized CVD Si3N4–SiCN ceramic (T = 1600°C) had the superior microwave‐absorbing ability.  相似文献   

7.
Spinel‐structured (Zn1?x(Li2/3Ti1/3)x)2TiO4 (x = 0–1) microwave dielectric ceramics were manufactured via a conventional mixed‐oxide method. The X‐ray diffraction and Raman spectra revealed that a disordered face‐centered cubic phase was found in the composition range of x < 0.5, and an ordered primitive cubic spinel solid solution was achieved as x was beyond 0.5. Such a disorder–order transition near x = 0.5 was accompanied by the variation of composition‐induced cation occupancy. The Q × f value first kept increasing up to ~160 000 (GHz) in disordered ceramics, and then sharply decreased as an ordered structure appeared at x ≥ 0.5. An obvious decrease in τf value was also accompanied by the appearance of an ordered structure. The minimum τf value (~ ?20 ppm/°C) was obtained in the x = 0.75 sample with the highest structural order degree. These results demonstrated that microwave dielectric properties of current spinel ceramics could be successfully modified by adjusting their structural order degree, which could be appropriately adopted for the design of spinel‐structured materials with favorable properties.  相似文献   

8.
Si3N4 ceramics modified with SiC nanofibers were prepared by gel casting aiming to enhance the dielectric and microwave absorption properties at temperatures ranging from 25?°C to 800?°C within X-band (8.2–12.4?GHz). The results indicate that the complex permittivity and dielectric loss are significantly increased with increased weight fraction of SiC nanofibers in the Si3N4 ceramics. Meanwhile, both complex permittivity and dielectric loss of SiC nanofibers modified Si3N4 ceramics are obviously temperature-dependent, and increase with the higher test temperatures. Increased charges mobility along conducting paths made of self-interconnected SiC nanofibers together with multi-scale net-shaped structure composed of SiC nanofibers, Si3N4 grains and micro-pores are the main reason for these enhancements in dielectric properties. Moreover, the calculated microwave absorption demonstrates that much enhanced microwave attenuation abilities can be achieved in the SiC nanofibers modified Si3N4 ceramics, and temperature has positive effects on the microwave absorption performance. The SiC nanofibers modified Si3N4 ceramics will be promising candidates as microwave absorbing materials for high-temperature applications.  相似文献   

9.
The (La1?xSmx)NbO4 (x=0‐0.10) ceramics were prepared by the conventional solid‐state reaction method. The microstructure and the microwave dielectric properties were discussed in detail. The X‐ray diffraction patterns of (La1?xSmx)NbO4 (x=0‐0.10) showed that only a single monoclinic fergusonite structure of LaNbO4 could be found. The dielectric constant (εr) was affected by the dielectric polarizabilities and the B‐site bond valence. The variation trend of Q×f0 was in accordance with packing fraction. The temperature coefficient of resonant frequency (τf) had a close relationship with the B‐site bond valence, which was determined by the bond strength and bond length. When sintered at 1325°C for 4 hours, the (La1?xSmx)NbO4 ceramics with x=0.08 exhibited enhanced microwave dielectric properties: εr=19.37, Q×f0=62203 GHz and τf=2.57 ppm/°C. In addition, we made an overview about the ceramics that possess the same packing fraction and bond valence relationships, the results show that this structure‐property relationship has a wide applicability.  相似文献   

10.
Microwave dielectric ceramics of (1?x)Ba(Mg1/3Nb2/3)O3xBaSnO3 [(1?x)BMN‐xBS] with high quality factors was synthesized by the solid‐state reaction method. The effects of BaSnO3 additions (x = 0–0.2) on the sinterability, crystal structures, microwave dielectric properties, and microwave dielectric loss mechanisms of BMN were investigated systematically. The degree of 1:2 cation ordering was decreased with increasing Sn content and eventually faded away as x ≥ 0.1, where the low‐temperature relaxations disappeared coincidently through the thermally stimulated depolarization current technique. It was supposed to be the short‐range misplacements of the B‐site cations within the long‐range ordered structure. Meanwhile, the high‐temperature relaxations associated with the in‐grain oxygen vacancies were found in all the title compounds. Though the concentrations of oxygen vacancies of 0.8BMN‐0.2BS were higher than BMN, high Q × f values could also be obtained even in the absence of 1:2 cation ordering. Specifically, the excellent characteristics like εr = 29.02, Q × f = 90 000 GHz and τf = 6.3 ppm/°C were achieved in the specimens of x = 0.2 sintered at 1450°C.  相似文献   

11.
Acceptor‐doped BaTiO3 powders of formula: BaTi1?xHoxO3?x/2?δ/2: x = 0.0001, 0.001, 0.01, 0.03, and 0.07, were prepared by sol‐gel synthesis, fired at 800°C–1500°C and either quenched or slow‐cooled to room temperature. Electrical properties of ceramics depended on firing conditions, Ho content, and cooling rate. Pellets of all x values fired at 800°C–1000°C were insulating and, from the presence of OH bands in the IR spectra, charge balance appeared to involve co‐doping of Ho3+ and H+ ions without necessity for oxygen vacancy creation. At higher firing temperatures, OH bands were absent. Pellets fired at 1400°C in air and slow cooled were insulating for both low x (0.0001) and high x (0.07) but at intermediate x (0.001 and 0.01) passed through a resistivity minimum of 20–30 Ω cm at room temperature, attributed to the presence of Ti3+ ions; it is suggested that, for these dilute Ho contents, each oxygen vacancy is charge compensated by one Ho3+ and one Ti3+ ion. At higher x, charge compensation is by Ho3+ ions and samples are insulating. A second, more general mechanism to generate Ti3+ ions, and a modest level of semiconductivity, involves reversible oxygen loss at high temperatures.  相似文献   

12.
According to solid‐state reaction routine, microwave dielectric ceramics of aluminum‐supplanted Ba6?3xNd8+2xTi18O54 (0.5 ≤ x ≤ 0.75) ceramics were synthesized and the effects of composition on microwave dielectric properties were determined. As x value increasing from 0.5 to 0.75, with high‐quality factor values (Q × f > 8000 GHz), both dielectric constant (εr) and temperature coefficient of resonant frequency (τf) dropped. The X‐ray diffraction patterns showed a single phase for all compositions. Typically, the research gained temperature coefficients at resonant frequency around + 10 ppm/°C, while kept high relative permittivity and quality factor value.  相似文献   

13.
The xBi(Zn2/3Nb1/3)O3–(1?x)(K0.5Na0.5)NbO3 (abbreviated as xBZN–(1?x)KNN) ceramics have been synthesized using the conventional solid‐state sintering method. The phase structure, dielectric properties and “relaxorlike” behavior of the ceramics were investigated. The 0.03BZN–0.97KNN ceramics show a broad and stable permittivity maximum near 2000 and lower dielectric loss (≤5%) at a broad temperature usage range (100°C–400°C) and the capacitance variation (ΔC/C150°C) is maintained smaller than ±15%. The 0.03BZN–0.97KNN ceramics only possess the diffuse phase transition and no frequency dispersion of dielectric permittivity, which indicates that 0.03BZN–0.97KNN ceramics is a high temperature “relaxorlike” ferroelectric ceramics. These results indicate that 0.03BZN–0.97KNN ceramics are excellent promising candidates for preparing high‐temperature multilayer ceramics capacitors.  相似文献   

14.
K0.5(Nd1?xBix)0.5MoO4 (0.2 ≤ x ≤ 0.7) ceramics were prepared via the solid‐state reaction method. All ceramics densified below 720°C with a uniform microstructure. As x increased from 0.2 to 0.7, relative permittivity (?r) increased from 13.6 to 26.2 commensurate with an increase in temperature coefficient of resonant frequency (TCF) from – 31 ppm/°C to + 60 ppm/°C and a decrease in Qf value (= quality factor; = resonant frequency) from 23 400 to 8620 GHz. Optimum TCF was obtained for x = 0.3 (?15 ppm/°C) and 0.4 (+4 ppm/°C) sintered at 660 and 620°C with ?r ~15.4, Qf ~19 650 GHz, and ?r ~17.3, Qf ~13 050 GHz, respectively. Ceramics in this novel solid solution are a candidate for ultra low temperature co‐fired ceramic (ULTCC) technology.  相似文献   

15.
The microwave dielectric characteristics of Ca[(Ga1/2Nb1/2)1?xTix]O3 ceramics were investigated together with the structure evolution. The excellent microwave dielectric characteristics were achieved by forming solid solution between Ca(Ga1/2Nb1/2)O3 and CaTiO3 in the present ceramics. The solid solutions in space group Pbnm with antiphase and inphase tilting were determined for all compositions where minor secondary phase was detected for x = 0–0.47, whereas no B‐site ordering was detected. Owing to the structural modification, the dielectric constant (εr) increased with increasing x, and the temperature coefficient of resonant frequency (τf) could be tuned from negative to positive, while the decrease of Qf value was acceptable. The best combination of microwave dielectric properties was obtained at = 0.47: εr = 51.6, Qf = 34 100 GHz and τf = ?0.3 ppm/°C.  相似文献   

16.
xSrTiO3–(1?x)LaAlO3 ceramics with ZnO–B2O3 sintering aid were prepared by solid‐state reaction method leading to a significant decrease in sintering temperature from 1550°C to 1050°C. The structure, microwave dielectric properties, and low‐temperature sintering behavior were systematically investigated. The results revealed the relationships among ionic size, ionic polarizability and cell volume. With increasing additive, chemical ordering of B‐site cations was indicated with selected area electron diffraction (SAED) patterns, HRTEM images and Raman spectrum, which contributed to the greatly enhanced microwave dielectric properties. Particularly, the 0.7Sr0.85 Mg0.15TiO3–0.3LaAlO3 ceramics modified with 10 wt % ZnO‐B2O3 can further decrease the sintering temperature down to 950°C without deteriorating its performance. Thermal tests implied ceramics featured good chemical compatibility with Cu/Ag electrode. Thus, they can be cofired with internal Cu/Ag electrodes in special patterns to fulfill different electrical functions for LTCC (low‐temperature cofired ceramic) application.  相似文献   

17.
Novel high quality factor microwave dielectric ceramics (1?x)ZrTiO4?x(Mg1/3Nb2/3)TiO4 (0.325≤x≤0.4) and (ZrTi)1?y(Mg1/3Nb2/3)yO4 (0.2≤y≤0.5) with the addition of 0.5 wt% MnCO3 in the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system were prepared, using solid‐state reaction method. The relationship between the structure and microwave dielectric properties of the ceramics was studied. The XRD patterns of the sintered samples reveal the main phase belonged to α‐PbO2‐type structure. Raman spectroscopy and infrared reflectivity (IR) spectra were employed to evaluate phonon modes of ceramics. The 0.65ZrTiO4?0.35(Mg1/3Nb2/3)TiO4?0.5 wt% MnCO3 ceramic can be well densified at 1240°C for 2 hours and exhibits good microwave dielectric properties with a relative permittivity (εr) of 42.5, a quality factor (Q×f) value of 43 520 GHz (at 5.9 Ghz) and temperature coefficient of resonant frequency (τf) value of ?5ppm/°C. Furthermore, the (ZrTi)0.7(Mg1/3Nb2/3)0.3O4?0.5 wt% MnCO3 ceramic sintered at 1260°C for 2 hours possesses a εr of 31.8, a Q×f value of 35 640 GHz (at 6.3 GHz) and a near zero τf value of ?5.9 ppm/°C. The results demonstrated that the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system with excellent properties was a promising material for microwave electronic device applications.  相似文献   

18.
Ba[(Mg1/3Nb2/3)1?xHfx]O3 (BMNH, x = 0.05, 0.1, 0.15, 0.2) solid solutions were prepared via the solid‐state reaction method. The effect of BaHfO3 on the crystal structure, microwave dielectric performance, and defect relaxation behavior of Ba(Mg1/3Nb2/3)O3 (BMN) were studied. BaHfO3 additions degraded the sintering activity of BMN powder, requiring a high sintering temperature (Ts) ~ 1650°C; but it could be effectively improved by a prolonged sintering process at a lower Ts of 1600°C. The well‐sintered BMNH ceramics (1600°C for 30 h) possessed a high densification >96%, and exhibited cubic perovskite structures without 1:2 cation ordering. Once doped with Hf, the low‐temperature relaxation in dielectric spectroscopy and thermally stimulated depolarization current (TSDC) for pure BMN disappeared, further indicating such relaxation is related to cation‐ordered structure. Oxygen vacancies, namely showing in‐grain and across‐grain‐boundary relaxation of ‐related defects, were the main defect types in BMNH. The concentrations of in‐grain decreased as x increased, which is beneficial to BMNH to maintain high Q × f values of 69 400‐73 000 GHz. Accompanied by a high εr of 33.27‐33.59 and a low τf of +13.6 to +20.7 ppm/°C, these materials have a good potential for applications in microwave components and devices.  相似文献   

19.
The dielectric relaxation and electrical conduction were investigated in (BixNa1?x)0.94Ba0.06TiO3 (Abb. xBNBT6, x = 0.5, 0.495, 0.485, and 0.475) ceramics prepared by solid state reaction. With a decrease in x, the dielectric properties of the ceramics decreased, whereas the electrical conduction increased, resulting in a transition from insulator to oxide‐ions conductor. When x = 0.475, the ceramics exhibited large conductivity (~10?3 S cm?1 at 575°C) and low activation energy (~0.45 eV), indicating their potential application in solid oxide fuel cells. A mixed conduction mechanism with oxide‐ions, electrons, and holes was proposed. With a decrease in x from 0.495 to 0.475, it was found that the p‐type conduction was switched to n‐type conduction. The dielectric relaxation of the x = 0.495 sample was associated with short‐range hopping of oxygen vacancies. However, the dielectric properties of the x = 0.485 and 0.475 samples can be explained by Maxwell‐Wagner interface relaxation.  相似文献   

20.
A new solid solution of (1?x)Pb(Mg1/2W1/2)O3xPb(Zn1/2W1/2)O3 has been prepared in the form of ceramics by solid‐state reaction with composition x up to 30%. It is found that with the substitution of Zn2+ for Mg2+ on the B site of the of complex perovskite structure the antiferroelectric (AFE) Curie temperature TC of PMW increases from 40°C (x = 0) to 67°C (x = 30%), indicating an enhancement of antiferroelectric order, whereas, at the same time, the phase transition becomes more diffuse due to a higher degree of chemical inhomogeneity. X‐ray diffraction analysis indicates that the crystal structure adopts an orthorhombic space group (Pmcn) with a decrease in lattice parameter a, but an increase in b and c as the Zn2+ concentration increases. The low dielectric constant (~ 102), low dielectric loss (tanδ ≈ 10?3), linear‐field‐induced polarization, and significantly high breakdown field (~ 125 kV/cm) at room temperature make this family of dielectric materials a promising candidate for ceramic insulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号