首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Cocoa butter-like fats were prepared from refined, bleached, and deodorized palm oil (RBD-PO) and fully hydrogenated soybean oil (HSO) by enzymatic interesterification at various weight ratios of substrates. The cocoa butter-like fats were isolated from the crude interesterification mixture by fractional crystallization from acetone. Analysis of these fat products by RP-HPLC in combination with ELSD or MS detection showed that their TAG distributions were similar to that of cocoa butter but that they also contained MAG and DAG, which were removed by silica chromatography. The optimal weight ratio of RBD-PO to HSO found to produce a fat product containing the major TAG component of cocoa butter, namely, 1(3)-palmitoyl-3(1)-stearoyl-2-monoolein (POS), was 1.6∶1. The m.p. of this purified product as determined by DSC was comparable to the m.p. of cocoa butter, and its yield was 45% based on the weight of the original substrates.  相似文献   

2.
3.
Cocoa butter-like fat was prepared from completely hydrogenated cottonseed and olive oils by enzymatic interesterification. The optimum reaction time to produce the major-component of cocoa butter, 1(3)-palmitoyl-3(1)-stearoyl-2-monoolein (POS), was 4 hr. The cocoa butter-like fat was isolated from the reaction mixture by two filtration steps. The yield of cocoa butter-like fat was 19%, based on the weight of the original oils. Chromatographic analysis of the product by reversephase high-performance liquid chromatography (HPLC) has shown it contains triglyceride components similar to those of cocoa butter, but that it has slightly more diglycerides. The melting point of this product, as measured by a differential scanning calorimeter, is 39°C, which compares well to the 36°C melting point of natural cocoa butter. Presented in part at the AOCS meeting in Cincinnati, Ohio, in 1989.  相似文献   

4.
Improvement of oxidative stability of soybean oil by blending with a more stable oil was investigated. Autoxidation of blends and interesterified blends (9∶1, 8∶2, 7∶3 and 1∶1, w/w) of soybean oil and palm olein was studied with respect to fatty acid composition, fatty acid location and triacylglycerol composition. Rates of formation of triacylglycerol hydroproxides, peroxide value and volatiles were evaluated. The fatty acid composition of soybean oil was changed by blending. Linolenic and linoleic acids decreased and oleic acid increased. The triacylglycerol composition of blends and interesterified blends was different from that of soybean oil. Relative to soybean oil, LnLL, LLL, LLO, LLP, LOO and LLS triacylglycerols were lowered and POO, POP and PLP were higher in blends and interesterified blends (where Ln, L, O, P and S represent linolenic, linoleic, oleic, palmitic and stearic acids, respectively). Interesterification of the blends leads to a decrease in POO and POP and an increase in LOP. Linoleic acid concentration at triacylglycerol carbon-2 was decreased by blending and interesterification. Rates of change for peroxide value and oxidation product formation confirmed the improvement of soybean oil stability by blending and interesterification. But, blends were more stable than interesterified blends. Also, the formation of hexanal, the major volatile of linoleate hydroperoxides of soybean oil, was decreased by blending and interesterification.  相似文献   

5.
Palm stearin (POs) with an iodine value of 41.4, sunflower oil (SFO) and palm kernel olein (PKOo) were blended in various ratios according to a three‐component mixture design and subjected to chemical interesterification (CIE). Triacylglycerol (TAG) and solid fat content (SFC) profiles of the chemically interesterified (CIEed) blends were analyzed and compared with those of the corresponding non‐CIEed blends. Upon CIE, extensive rearrangement of fatty acids (FA) among TAG was evident. The concentrations of several TAG were increased, some decreased and several new TAG might also have been formed. The changes in the TAG profiles were reflected in the SFC profiles of the blends. The SFC of the CIEed blends, except the binary blends of POs/PKOo which experienced an increase in SFC following CIE, revealed that they were softer than their respective starting blends. Randomization of FA distribution within and among TAG molecules of POs and PKOo led to a modification in TAG composition of the POs/PKOo blends and improved miscibility between the two fats, and consequently diminished the eutectic interaction that occurred between POs and PKOo.  相似文献   

6.
Palm stearin (POs) and palm kernel olein (PKOo) blends were modified by enzymatic interesterification (IE) to achieve the physical properties of margarine fats. POs and PKOo are both products of the palm oil industry that presently have limited use. Rhizomucor miehei lipase (Lipozyme IM 60) was used to catalyze the interesterification of oil blends at 60°C. The progress of interesterification was monitored by following changes in triacylglyceride composition. At 60°C interesterification can be completed in 5 h. Degrees of hydrolysis obtained through IE for all blends were decreased from 2.9 to 2.0 by use of dry molecular sieves. The solid fat contents of POs/PKOo 30:70 and 70:30 interesterified blends were 9.6 and 18.1 at 20°C, and 0 and 4.1 at 35°C, respectively. The slip melting point (SMP) of POs/PKOo 30:70 was 40.0°C before interesterification and 29.9°C after IE. For POs/PKOs 70:30, SMP was 47.7 before and 37.5°C after IE. These thermal characteristics of interesterified POs/PKOo blend ratios from 30:70 to 70:30 were comparable to those of commercial margarines. Results showed that IE was effective in producing solid fats with less than 0.5% trans.  相似文献   

7.
Response surface methodology was used to model the incorporation of stearic acid into a blend of palm olein and palm kernel oil in hexane using the sn-1,3-regiospecific lipase Lipozyme RM IM. The factors investigated were incubation time, temperature, and substrate molar ratio. A second-order model with interaction was used to fit the experimental data. The coefficients of determination, R 2 and Q 2, were 0.96 and 0.90, respectively. The adjusted R 2 was 0.95. The regression probability was less than 0.001, and the model showed no lack of fit. Also, a linear relationship was observed between the predicted and observed values. All parameters studied had positive effects on incorporation of stearic acid, with substrate molar ratio having the greatest effect. The interaction terms of substrate molar ratio with temperature and time also had positive effects on incorporation, whereas the effect of the squared term of substrate molar ratio was negative. The quadratic terms of temperature and time, as well as their interaction term, had no significant effect on incorporation at α0.05. Model verification was done by performing a chi-square test, which showed that there was no significant difference between predicted values and a new set of observed responses.  相似文献   

8.
Double-fractionated palm olein (DfPOo) fractions with iodine values (IV) of 60 and 65 were each blended with low-erucic acid rapeseed (LEAR) oil in various proportions. Clarities of the blends at different temperatures were determined. Maximum levels of DfPOo-IV60 and DfPOo-IV65 in blends that remained clear at 20°C for at least 120 d were 40 and 80%, respectively. At 15°C, the maximum levels were 10 and 40%, and at 10°C, 10 and 20%, respectively. At 5°C, only a blend of 10% DfPOo-IV65 in LEAR remained clear for 120 d. Maximum levels of DfPOo-IV60 and DfPOo-IV65 in blends that passed the cold test were 30% for both palm oleins. Maximum levels of the palm oleins in blends with LEAR were higher than those of blends with soybean oil. Cloud points were lower in palm olein/LEAR blends than those of palm olein/soybean oil blends, probably because LEAR contains less saturated fatty acids than soybean oil.  相似文献   

9.
A variety of esters from the reactions of monoalcohols with palm olein were prepared, epoxidized byin situ peroxyacid techniques, and some of their physical properties were compared. The thermal oxidative stabilities of these esters andbis(2-ethylhexyl) phthalate were studied. The esters were placed in an oven maintained at 120°C, and the loss of mass and acid, iodine, percent oxirane, hydroxyl, and peroxide values were monitored periodically. The epoxidized esters had higher densities and lower volatilities, and were more resistant toward oxidation than their unepoxidized counterparts. The stability of the oxirane was related to the initial acid value of the sample. Higher initial acid value resulted in a greater decrease in the oxirane content, indicating acid-catalyzed cleavage of the oxirane ring.  相似文献   

10.
The effect of blending and interesterification on the physicochemical characteristics of fat blends containing palm oil products was studied. The characteristics of the palm-based blends were tailored to resemble oil blends extracted from commercial reduced fat spreads (RFS). The commercial products were found to contain up to 20.4% trans fatty acids, whereas the palm-based blends were free of trans fatty acids. Slip melting point of the blends varied from 26.0–32.0°C for tub, and 30.0–33.0°C for block RFS. Solid fat content at 5 and 10°C (refrigeration temperature), respectively, varied from 10.9–19.7% and 8.5–17.6% for tub, and 28.2–38.6% and 20.8–33.5% for block RFS. Melting enthalpy of the tub RFS varied from 35.0–54.3 J/g and that of block RFS varied from 58.0–75.4 J/g. To produce block RFS, 65% palm oil (PO) and 18% palm kernel olein (PKOo) could be added in a ternary blend with sunflower oil (SFO), but only 47% PO and 10% PKOo are suggested for tub RFS. Higher proportion of PO, i.e., 72% for block RFS and 65% for tub RFS, could be used after the ternary blend was interesterified. Although a ternary blend of palm olein (POo)/SFO/PKOo was not suitable for RFS formulation, after interesterification as much as 90% POo and 26% PKOo could be used in the block RFS formulation. For tub RFS a maximum of 30% POo was found suitable.  相似文献   

11.
Commercial lipases were tested for the ability to hydrolyze palm olein in isooctane in a two-phase system. Lipase OF (from Candida rugosa) showed the highest specific activity of 209 U/mg protein where 1 U is the amount of lipase enzyme required to produce 1 μmol of fatty acid (as palmitic acid) per minute. The enzyme was adsorbed completely on Accurel EP 100 (particle size <200 μm) with 20.5% activity retained. The soluble and the immobilized lipase OF showed optimal activity at the same pH and temperature (pH 6.5–7.5 and 35°C). However, the immobilized lipase had a wider range of pH and higher temperature stability. Continuous hydrolysis of palm olein was performed in a packed-bed reactor with 656 U of immobilized enzyme. The substrate (20% palm olein in isooctane) and Tris/maleate buffer were fed concurrently at the flow rates of 0.08 and 0.04 mL/min, respectively. The system gave a degree of hydrolysis (DH) of 90–100% for up to 250 h. A more stable system allowing for more than 300 h operation at DH>95% was achieved by mixing the immobilized enzyme with 1000–1500 μm Accurel EP100 to increase the system porosity and continuous feeding of the aqueous phase recycling from the product mixture. A similar result was also obtained using 1007 U of the immobilized enzyme and 60% palm olein in isooctane fed at 0.06 mL/min.  相似文献   

12.
As are traditional fractionation technologies, static dry fractionation is a highly reliable technology for the consistent production of good-quality palm kernel stearin (PKS) for use as cocoa butter substitute (CBS) after total hydrogenation. A new process route now permits the production of unhardened yet high-quality CBS. Also an increase in total stearin yield can be achieved, via a successful refractionation of palm kernel olein. DSC analysis together with pilot static fractionation trials on the palm kernel olein indicates that a cooling water temperature that is too low (e.g., 17°C) may result in the quick formation of unstable crystals that are possibly later converted to a more stable form. The resulting mixture of crystals with a possibly different polymorphic structure is easily squeezed through the filter cloth during filtration, whereas a slower, but more homogeneous co-crystallization occurs at higher temperature (18°C or higher) and results in a much more stress-resistant slurry. Polarized light microscopy analysis confirmed that crystal size is not the only determining factor for a successful filtration. The total two-stage static fractionation of palm kernel oil (PKO) [iodine value (IV) 18] on a pilot scale results in the following three end products: PKS IV 5 (yield: 29%, for direct use as CBS), PK olein IV 27 (yield: 58%), and PKS IV 7 (yield: 13% for use as CBS after full hydrogenation). The unhardened PKS IV 5 has outstanding melting and crystallization properties, comparable to traditional hydrogenated stearin fractions. Therefore, rather than the higher stearin yield, the reduced hydrogenation capacity is most probably the most important benefit of the two-stage static fractionation process.  相似文献   

13.
The physical properties of Pseudomonas and Rhizomucor miehei lipase-catalyzed transesterified blends of palm stearin:palm kernel olein (PS:PKO), ranging from 40% palm stearin to 80% palm stearin in 10% increments, were analyzed for their slip melting points (SMP), solid fat content (SFC), melting thermograms, and polymorphic forms. The Pseudomonas lipase caused a greater decrease in SMP (15°C) in the PS:PKO (40:60) blend than the R. miehei lipase (10.5°C). Generally, all transesterified blends had lower SMP than their unreacted blends. Pseudomonas lipase-catalyzed blends at 40:60 and 50:50 ratio also showed complete melting at 37°C and 40°C, respectively, whereas for the R. miehei lipase-catalyzed 40:60 blend, a residual SFC of 3.9% was observed at 40°C. Randomization of fatty acids by Pseudomonas lipase also led to a greater decrease in SFC than the rearrangement of fatty acids by R. miehei lipase. Differential scanning calorimetry results confirmed this observation. Pseudomonas lipase also successfully changed the polymorphic forms of the unreacted blends from a predominantly β form to that of an exclusively β′ form. Both β and β′ forms existed in the R. miehei lipase-catalyzed reaction blends, with β′ being the dominant form.  相似文献   

14.
A few solid and semi-solid fats of tree origin in India, namely sal (Shorea robusta), kokum(Garcinia indica), mahua (Madhuca latifolia), dhupa (Vateria indica) and mango (Mangifera indica), were chosen for modification into cocoa butter substitutes by lipase-catalyzed ester interchange with methyl palmitate and/or stearate. Hexane solutions of mixtures of fat and methyl ester(s) in various molar proportions were passed through a column of Lipozyme™, a lipase fromMucor miehei immobilized on a macroparticulate ion-exchange resin. The interesterified fats were purified by extraction with 95% ethanol followed by silica column chromatography. Interesterified dhupa, kokum and sal fats compared well with cocoa butter in the total fatty acid composition and the 2-position of triacylglycerols, as well as glyceride composition. In particular, interesterified kokum fat resembled cocoa butter well in solid fat content and peak melting temperature as determined by differential scanning calorimetry. IICT Communication No. 2743.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号