首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Utilization of wind energy as an energy source has been growing rapidly in the whole world due to environmental pollution, consumption of the limited fossil fuels and global warming. Although Turkey has fairly high wind energy potential, exploitation of the wind energy is still in the crawling level. In the current study, wind characteristics and wind energy potential of Kırklareli province in the Marmara Region, Turkey were analyzed taking into account the wind data measured as hourly time series. The wind data used in the study were taken from Electrical Power Resources Survey and Development Administration (EIEI) for the year 2004. The measured wind data were processed as annual, seasonal and monthly. Weibull and Rayleigh probability density functions of the location are calculated in the light of observed data and Weibull shape parameter k and scale parameter c are found as 1.75 and 5.25 m/s for the year 2004. According to the power calculations done for the site, annual mean power density based on Weibull function is 138.85 W/m2. The results indicate that investigated site has fairly wind energy potential for the utilization.  相似文献   

2.
The negative effects of non-renewable fossil fuels have forced scientists to draw attention to clean energy sources which are both environmentally more suitable and renewable. Although Turkey enjoys fairly high wind energy potential, an investigation and exploitation of this source is still below the desired level. In this study which is a preliminary study on wind energy cost in Central Anatolian-Turkey, the wind energy production using time-series approach and the economic evaluation of various wind energy conversion systems (WECSs) enjoying the 2.5, 5, 10, 20, 30, 50, 100 and 150 kW rated power size using the levelised cost of electricity (LCOE) method for the seven different locations in Central Turkey were estimated. In addition, effects of escalation ratio of operation and maintenance cost and annual mean speed on LCOE are taken into account. The wind speed data for a period between 2000 and 2006 years were taken from Turkish State Meteorological Service (TSMS). According to the result of the calculations, it is shown that the WECS of capacity 150 kW produce the energy output 120,978 kWh per year in the Case-A (Pinarbasi) for hub height 30 m and also the LCOE varies in the range of 0.29–30.0 $/kWh for all WECS considered.  相似文献   

3.
The wind characteristics of six locations in the State of Kuwait have been assessed. The annual average wind speed for the considered sites ranged from 3.7 to 5.5 m/s and a mean wind power density from 80 to 167 W/m2 at standard height of 10 m. The Weibull parameters and power density of each station have been determined using Weibull distribution. The wind data at heights 15, 20, 25 and 30 m were obtained by extrapolation of the 10 m data using the Power-Law. The potential wind energy at different heights was estimated using Weibull parameters. Maximum power density is found at 30 m height which varies between 130 and 275 W/m2 with 70% increase from the standard height indicating fairly potential wind energy especially in the northern part of the country. The highest potential wind power was found during the summer season which is the peak demand season of electricity in Kuwait.  相似文献   

4.
This work presents an assessment of the potential and economical feasibility of adopting off-shore/on-shore wind energy as a renewable source of energy in Qatar. An analysis is presented for the long term measured on-shore wind speed (1976–2000) at Doha International Airport. A similar analysis is presented for the measured off-shore wind speed at the Qatari Haloul Island. For the on-shore measurements, the average annual wind speed (at 20 m height) was found to be about 5.1 m/s. On the other hand, for the off-shore measurements at Haloul, the average annual wind speed was found to be about 6.0 m/s. This result indicates the suitability of utilizing small to medium-size wind turbine generators, efficiently. Such generators can be implemented for water pumping and to produce sufficient electricity to meet vital, limited needs of remote locations, such as isolated farms, which do not have access to the national electricity grid. An economical assessment is presented which takes into consideration the interest recovery factor, the lifetime of the wind energy conversion system (WECS), the investment rate and operation and maintenance costs. The results indicate that the cost of electricity generation from the wind in Qatar compares favorably to that from fossil fuel resources. The feasibility of utilizing off-shore wind turbine systems to meet the power requirements of the island of Haloul and possibly provide additional power for nearby on-shore areas is discussed.  相似文献   

5.
Wind energy potential in various parts of Turkey is becoming economical due to reductions in the wind turbine costs, and in fossil fuel atmospheric pollution. The global change program imposes restrictions for use of alternative renewable and environmentally friendly energy sources. Wind energy is among such energy potentials and its practical and economical use gain significance day by day. The first wind energy turbine site investigation and wind power application possibility have been presented for the Akhisar area within the eastern provinces of Turkey. Different wind turbine technologies are assessed according to the local wind speed variations. Locally and technologically suitable wind turbines are selected. Finally their locations are decided by expert views and field measurements with the usage of well known WASP software. It is calculated that a minimum of 31436 MWh/year wind can be generated in this site. In the calculations 10% error possibility is allowed.  相似文献   

6.
In this study, the potential of wind energy and assessment of wind energy systems in Turkey were studied. The main purpose of this study is to investigate the wind energy potential and future wind conversion systems project in Turkey. The wind energy potential of various regions was investigated; and the exploitation of the wind energy in Turkey was discussed. Various regions were analyzed taking into account the wind data measured as hourly time series in the windy locations. The wind data used in this study were taken from Electrical Power Resources Survey and Development Administration (EIEI) for the year 2010. This paper reviews the assessment of wind energy in Turkey as of the end of May 2010 including wind energy applications. Turkey's total theoretically available potential for wind power is around 131,756.40 MW and sea wind power 17,393.20 MW annually, according to TUREB (TWEA). When Turkey has 1.5 MW nominal installed wind energy capacity in 1998, then this capacity has increased to 1522.20 MW in 2010. Wind power plant with a total capacity of 1522.20 MW will be commissioned 2166.65 MW in December 2011.  相似文献   

7.
The wind energy potential at four different sites in Ethiopia – Addis Ababa (09:02N, 38:42E), Mekele (13:33N, 39:30E), Nazret (08:32N, 39:22E), and Debrezeit (8:44N, 39:02E) – has been investigated by compiling data from different sources and analyzing it using a software tool. The results relating to wind energy potential are given in terms of the monthly average wind speed, wind speed probability density function (PDF), wind speed cumulative density function (CDF), and wind speed duration curve (DC) for all four selected sites. In brief, for measurements taken at a height of 10 m, the results show that for three of the four locations the wind energy potential is reasonable, with average wind speeds of approximately 4 m/s. For the fourth site, the mean wind speed is less than 3 m/s. This study is the first stage in a longer project and will be followed by an analysis of solar energy potential and finally the design of a hybrid standalone electric energy supply system that includes a wind turbine, PV, diesel generator and battery.  相似文献   

8.
This paper analyses the wind speed of some major cities in province of Yazd which is located in central part of Iran. Also, the feasibility study of implementing wind turbines to take advantage of wind power is reviewed and then the subject of wind speed and wind potential at different stations is considered. This paper utilized wind speed data over a period of almost 13 years between 1992 and 2005 from 11 stations, to assess the wind power potential at these sites. In this paper, the hourly measured wind speed data at 10 m, 20 m and 40 m height for Yazd province have been statically analyzed to determine the potential of wind power generation. Extrapolation of the 10 m data, using the Power Law, has been used to determine the wind data at heights of 20 m and 40 m. The results showed that most of the stations have annual average wind speed of less than 4.5 m/s which is considered as unacceptable for installation of the wind turbines. City of Herat has higher wind energy potential with annual wind speed average of 5.05 m/s and 6.86 m/s, respectively, at height of 10 m and 40 m above ground level (AGL). This site is a good candidate for remote area wind energy applications. But some more information is required, because the collected data for Herat is only for 2004. Cities of Aghda with 3.96 m/s, Gariz with 3.95 m/s, and Maybod with 3.83 m/s annual wind speed average at height of 10 m above ground level are also able to harness wind by installing small wind turbines. The Tabas and Bafgh sites wind speed data indicated that the two sites have lower annual wind speed averages between 1.56 m/s and 2.22 m/s at 10 m height. The monthly and annual wind speeds at different heights have been studied to ensure optimum selection of wind turbine installation for different stations in Yazd.  相似文献   

9.
Utilization of wind energy in Bangladesh has been slow mainly due to lack of quality wind data. Recent measurements in some places have shown significant wind energy potentials in Bangladesh. In this paper, a wind map is presented which incorporates several microscale features, such as terrain roughness, elevation etc. with a mesoscale model. Several meso-maps were obtained from global databases and a suitable model was chosen and modified for a 30-m elevation. Ground data from various sources were collected and modified for height and land condition adjustments based on local knowledge and GIS information. It was found that, the generated wind map and the modified ground data resemble. Annual average wind speed at 30 m height along the coastal belt is above 5 m/s. Wind speed in northeastern parts is above 4.5 m/s while inland wind speed is around 3.5 m/s for most part of Bangladesh. Small-scale wind turbines could be installed and tested in locations such as St. Martins Island, Cox’s Bazar, Patenga, Bhola, Barguna, Dinajpur, Thakurgaon and Panchagar.  相似文献   

10.
Wind energy has become a major competitor of traditional fossil fuel energy, particularly with the successful operation of multi-megawatt sized wind turbines. However, wind with reasonable speed is not adequately sustainable everywhere to build an economical wind farm. The potential site has to be thoroughly investigated at least with respect to wind speed profile and air density. Wind speed increases with height, thus an increase of the height of turbine rotor leads to more generated power. Therefore, it is imperative to have a precise knowledge of wind speed profiles in order to assess the potential for a wind farm site. This paper proposes a clustering algorithm based neuro-fuzzy method to find wind speed profile up to height of 100 m based on knowledge of wind speed at heights 10, 20, 30, 40 m. The model estimated wind speed at 40 m based on measured data at 10, 20, and 30 m has 3% mean absolute percent error when compared with measured wind speed at height 40 m. This close agreement between estimated and measured wind speed at 40 m indicates the viability of the proposed method. The comparison with the 1/7th law and experimental wind shear method further proofs the suitability of the proposed method for generating wind speed profile based on knowledge of wind speed at lower heights.  相似文献   

11.
M.R. Islam  R. Saidur  N.A. Rahim 《Energy》2011,36(2):985-992
The wind resource is a crucial step in planning a wind energy project and detailed knowledge of the wind characteristic at a site is needed to estimate the performance of a wind energy project. In this paper, with the help of 2-parameter Weibull distribution, the assessment of wind energy potentiality at Kudat and Labuan in 2006-2008 was carried out. “WRPLOT” software has been used to show the wind direction and resultant of the wind speed direction. The monthly and yearly highest mean wind speeds were 4.76 m/s at Kudat and 3.39 m/s at Labuan respectively. The annual highest values of the Weibull shape parameter (k) and scale parameter (c) were 1.86 and 3.81 m/s respectively. The maximum wind power density was found to be 67.40 W/m2 at Kudat for the year 2008. The maximum wind energy density was found to be 590.40 kWh/m2/year at Kudat in 2008. The highest most probable wind speed and wind speed carrying maximum energy were estimated 2.44 m/s at Labuan in 2007 and 6.02 m/s at Kudat in 2007. The maximum deviation, at wind speed more than 2 m/s, between observed and Weibull frequency distribution was about 5%. The most probable wind directions (blowing from) were 190° and 269° at Kudat and Labuan through the study years. From this study, it is concluded that these sites are unsuitable for the large-scale wind energy generation. However, small-scale wind energy can be generated at the turbine height of 100 m.  相似文献   

12.
In this study wind resources evaluation and wind energy assessment of the São João do Cariri (SJC) in Paraiba (PB) state situated in Brazilian northeast were analyzed during the period 2006/2009. Wind speed (V, m/s), wind direction and air temperature (T, °C) at 25 m and 50 m were collected from SONDA (Sistema de Organização Nacional de Dados Ambientais) meteorological station (38°N 7°E). The average wind speed and temperature for 25 m and 50 m were found 4.74 m/s, 24.46 °C and 5.31 m/s 24.25 °C respectively. The wind speed predominate direction found were SSE (165°) from both 25 m and 50 m heights. The wind speed distribution curve was obtained using the Weibull probability density function through the WAsP program, the values of Weibull shape (K), scale (A, m/s) and Weibull fit wind speed and power wind density (P, W/m2) were found 2.54, 5.4 m/s, 4.76 m/s and 103 W/m2 for 25 m wind height measurements and 2.59, 6.0 m/s, 5.36 m/s and 145 W/m2 for 50 m wind height measurements. The cost (€/kWh) from electrical wind energy obtained by wind turbine generation, at 25 m height, was found 0.046 by using 300 kW power rated wind turbine, in the best scenario, with an associate Cf of 14.5%.  相似文献   

13.
Wind resource assessment of the Jordanian southern region   总被引:1,自引:0,他引:1  
Eyad S. Hrayshat   《Renewable Energy》2007,32(11):1948-1960
Wind data in terms of annual, seasonal and diurnal variations at Queira, which is located in the southern part of Jordan was studied and analyzed. For this purpose, long-term wind speed data for a period of 12 years (1990–2001) was used. The analysis showed that the seasonal and diurnal pattern of wind speed matches the electricity load pattern of the location. Higher winds of the order of 6 m/s and more were observed during both the summer months of the year (May–August) and peak hours (1100–1500) of the day. The wind duration availability is discussed as the number of hours during which the wind remained in certain wind speed intervals. The possibility of electricity generation from wind power at Queira was carried out using three different wind energy systems of sizes 100, 22 kW rated power, and a wind farm consisting of 25 small wind turbines; each of 4 kW rated power with hub heights of 20, 30, and 40 m. The energy production analysis showed higher production from the wind farm with a 20 m hub height than the production from the other two wind turbines. Similarly, the cost analysis showed that the lowest generation costs of 1 kWh were obtained for the wind farm compared to the other two wind turbines. The possibility of water pumping using the wind farm was also investigated. The results showed that water pumping using wind turbines is an appropriate alternative for the photovoltaic water pumping in the region.  相似文献   

14.
Wind shear coefficients and energy yield for Dhahran, Saudi Arabia   总被引:2,自引:0,他引:2  
This study presents calculated values of wind shear coefficients (WSE) using measured values of wind speed at 20, 30, and 40 m above ground level (AGL), for Dhahran, Saudi Arabia. The study also includes the air density estimated using measured air temperature and surface pressure and effect of wind shear coefficient on energy yield from a wind farm of 60 MW installed capacity developed using 40 wind turbines of 1500 kW size. The data used in the determination of wind shear coefficient covered a period of almost 5 years between 4 October 1995 and 30 November 2000.The study suggests a value of 0.189 of wind shear coefficient for the calculation of wind speed at different heights if measured values are known at one height. No regular seasonal trend was observed in the values of wind shear coefficients. In case of diurnal variation, higher values were observed during nighttime and early hours of the day and comparatively smaller values during day light hours. The air density, calculated using measured temperature and pressure was found to be 1.18 kg/m3. The energy yield obtained using RetScreen software, showed that the actual wind shear coefficient presented in this paper produced around 11–12% more energy compared to that obtained using 1/7 power law. Accordingly, 2–3% higher plant capacity factors were achieved using actual site-dependent wind shear coefficient instead of 1/7th wind power law exponent for the calculation of wind speed at hub-height.  相似文献   

15.
In this paper, the hourly measured wind speed data for years 2003–2005 at 10 m, 30 m and 60 m height for Kingdom of Bahrain have been statically analyzed to determine the potential of wind power generation. Extrapolation of the 10 m data, using the Power Law, has been used to determine the wind data at heights of 30 m and 60 m. Weibull distribution parameters have been estimated and compared annually and on monthly bases using two methods; the graphical method and the another method, designated in this paper as approximated method, which depends on the standard deviation and average wind speed. The maximum power density for 10 m, 30 m and 60 m heights were found to be 164.33 W/m2, 624.17 W/m2 and 1171.18 W/m2 in February, respectively while the minimum power density were 65.33 W/m2, 244.33 W/m2 and 454.53 W/m2 in October, respectively. The average annual wind power density was found to be 114.54 W/m2 for 10 m height, 433.29 W/m2 for 30 m height and 816.70 W/m2 for 60 m height. Weibull probability function, using Weibull parameters estimated from the approximated method, has shown to provide more accurate prediction of average wind speed and average power density than the graphical method. In addition, the site matching of wind turbine generators at 30 m and 60 m heights has been investigated by estimating the capacity factors of various commercially available wind turbines generators. The monthly and annual variation of capacity factors have been studied to ensure optimum selection of wind turbine generators.  相似文献   

16.
The measured wind data of Local Government Engineering Department (LGED) for 2006 at 30 m height shows a good prospect for wind energy extraction at the site. For a few months and hours the speed is below the cut in speeds of the available turbines in the market. The predicted solar radiation data from directly related measured cloud cover and sunshine duration data of Bangladesh Meteorological Department (BMD) for 1992–2003 indicates that a reliable power system can be developed over the year if the solar energy technology is merged with the wind energy technologies for this site. This research work has studied on optimization of a wind–photovoltaic-battery hybrid system and its performance for a typical community load. The assessment shows that least cost of energy (COE) is about USD 0.363/kWh for a community using 169 kWh/day with 61 kW peak and having minimum amount of access or unused energy. Moreover, compared to the existing fossil fuel-based electricity supply, such an environment friendly system can mitigate about 25 t CO2/yr. The analysis also indicates that wind–PV-battery is economically viable as a replacement for conventional grid energy supply for a community at a minimum distance of about 17 km from grid.  相似文献   

17.
In this study, a ten minute period measuring wind speed data for year 2007 at 10 m, 30 m and 40 m heights for different places in Iran, has been statistically analyzed to determine the potential of wind power generation. Sixty eight sites have been studied. The objective is to evaluate the most important characteristics of wind energy in the studied sites. The statistical attitudes permit us to estimate the mean wind speed, the wind speed distribution function, the mean wind power density and the wind rose in the site at three different heights. Some local phenomena are also considered in the characterization of the site.  相似文献   

18.
According to the EU Directive 2001/77/EC 7% of all electricity production is to be generated from renewable energy sources (RES) in Lithuania in 2010. Electricity production from RES is determined by hydro, biomass and wind energy resources in Lithuania. Further development of hydro power plants is limited by environmental restrictions, therefore priority is given to wind energy development. The aim of this paper is to show estimation of the maximum wind power penetration in the Lithuanian electricity system using such criteria as wind potential, possibilities of the existing electricity network, possible environmental impact, and social and economical aspects. Generalization of data from the meteorological stations and special measurements shows that the highest average wind speed in Lithuanian territory is in the coastal region and at 50 m above ground level reaches 6.4 m/s. In regard to wind resource distribution in this region, arrangement of electricity grid and environment protection requirements, six zones have been determined for wind power plant construction. Calculations have shown that the largest total installed capacity of wind farms, which could cause no significant increase in power transmission expenses, is 170 MW. The threshold, which cannot be passed without capital reconstruction of electricity network, is 500 MW of total capacity of wind farms.  相似文献   

19.
The analysis of recently collected wind data at five sites in Saudi Arabia namely, Dhulum, Arar, Yanbu, Gassim and Dhahran is presented. The five sites represent different geographically and climatologically conditions. The data collected over a period spanned between 1995 and 2002 with different collection periods for each site. Daily, monthly and frequency profiles of the wind speed at the sites showed that Dhulum and Arar sites have higher wind energy potential with annual wind speed average of 5.7 and 5.4 m/s and speeds higher than 5 m/s for 60 and 47% of the time, respectively. The two sites are candidates for remote area wind energy applications. The costal site's, i.e. Yanbu and Dhahran wind speed data indicated that the two sites have lower annual wind speed averages and wind blows at speed higher than 5 m/s during afternoon hours. That makes the two sites candidates for grid connected wind systems for electrical load peak shaving. The data of Gassim site showed that the site has the lowest wind energy potential compared to the others. The annual energy produced by a Nordex N43 wind machine is estimated to be 1080, 990, 730, 454 and 833 MWh for Dhulum, Arar, Yanbu, Gassim and Dhahran, respectively. The analysis showed that the estimated annual energy produced by the machine based on 10 min averaged data is 2.5% higher than the estimated energy based on 30 min averaged data.  相似文献   

20.
Wind characteristics and wind energy resource potentials for Owerri, Nigeria are presented. These were evaluated using routine wind data measurements at a height of 10 m above ground level at the Lake Nwebere Campus, Federal University of Technology, Owerri between 1988 and 1992. The most prevailing wind is from the Southwest and the average wind speed and its variation are 2.80 and 0.81 m s−1, respectively.Accordingly, the maximum annual mean power density exploitable from the wind at this site is 7.66 ± 0.15 W m−2 out of the estimated available annual mean wind power density of 12.91 ± 0.26 W m−2. The annual mean energy density available in the wind was found to be 60.29 kW h m−2. Thus, the potential for year-round wind energy utilization in Owerri, Nigeria is rather low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号