首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied Josephson tunneling through a circularly polarized micron or submicron-size disk of a soft ferromagnetic material. Such a disk contains a vortex that exhibits rich classical dynamics and has recently been proposed as a tool to study quantum dynamics of the nanoscale vortex core. The change in the Josephson current that is related to a tiny displacement of the vortex core has been computed analytically and plotted numerically for disks used in experiments. It is shown that a Josephson junction with a magnetic disk in the vortex state can be an interesting physical system that may be used to measure the nanoscale motion of the magnetic vortex.  相似文献   

2.
Great interest in current-induced magnetic excitation and switching in a magnetic nanopillar has been caused by the theoretical predictions of these phenomena. The concept of using a spin-polarized current to switch the magnetization orientation of a magnetic layer provides a possible way to realize future 'current-driven' devices: in such devices, direct switching of the magnetic memory bits would be produced by a local current application, instead of by a magnetic field generated by attached wires. Until now, all the reported work on current-induced magnetization switching has been concentrated on a simple ferromagnet/Cu/ferromagnet trilayer. Here we report the observation of current-induced magnetization switching in exchange-biased spin valves (ESPVs) at room temperature. The ESPVs clearly show current-induced magnetization switching behaviour under a sweeping direct current with a very high density. We show that insertion of a ruthenium layer between an ESPV nanopillar and the top electrode effectively decreases the critical current density from about 10(8) to 10(7) A cm(-2). In a well-designed 'antisymmetric' ESPV structure, this critical current density can be further reduced to 2 x 10(6) A cm(-2). We believe that the substantial reduction of critical current could make it possible for current-induced magnetization switching to be directly applied in spintronic devices, such as magnetic random-access memory.  相似文献   

3.
The mechanically induced magnetization switching in nanomagnets is studied by a constraint-free phase field model, which permits exactly constant magnetization magnitude and explicit magneto-mechanical coupling. Depending on the geometry of the nanomagnets, there exist two distinct switching modes: one is the coherent mode where the magnetization vector remains homogeneous during the switching, and the other is the incoherent mode where heterogeneous magnetization distribution occurs. For the application of nanomagnets-based logic and memory devices, the coherent mode is of great interest. Results show that a deterministic 180° switching can happen if mechanical loading is removed once the magnetization rotates to the largest switching angle. The switching time decreases with the magnitude of the applied strain. In addition, the 180° switching under a combination of magnetic field and mechanical strain is also investigated. Simulations demonstrate that an optimum additional strain to reduce the switching time is around 0.2%. The mechanically induced switching is further shown to be damping dependent. A larger damping coefficient is favorable for a faster switching only when the deterministic 180° switching can be guaranteed. This work provides a foundation for the study of mechanically driven/assisted nanomagnets-based logic and memory devices.  相似文献   

4.
In this paper, we present a simple method to fabricate ultra-high-density hexagonal arrays of ferromagnetic nanorings having 13?nm outer diameter, 5?nm inner diameter and 5 nm thickness. Cobalt magnetic nanorings were fabricated using a self-assembled diblock copolymer template with an angular evaporation of metal followed by an ion-beam etching. Magnetic measurements and theoretical calculations suggest that, at low fields, only the single domain and vortex states are important for rings of this size. The measured magnetization as a function of applied field shows a hysteresis that is consistent. These ultrasmall ferromagnetic rings have potential use in magnetic memory devices due to the simplicity of the preparation coupled with the ultra-high-density and geometry-controlled switching. This fabrication technique can be extended to other materials for applications in optics, sensing and nanoscale research.  相似文献   

5.
Limitations placed upon the NDRO performance of a magnetic film memory device by the detrimental effects of skew and demagnetizing fields are investigated. An expression has been derived that relates these effects to the NDRO critical magnetization angle for devices whose rotational switching can be characterized by a Stoner-Wohlfarth switching astroid. Experimental results for typical devices are presented that substantiate the theory.  相似文献   

6.
李化南  李东飞 《材料导报》2016,30(11):68-70
纳米盘中的磁涡旋因具有形成稳态的尺寸小、热稳定性高以及可以高密度集成等独特的磁特征而被广泛应用在磁随机存储器、新型逻辑原件、纳米微波振荡器等方面。磁涡旋在这些方面的应用主要是利用磁涡旋的旋转回归运动和磁涡旋核极性的反转过程中所表现出来的动力学特征。文章对磁涡旋核极性反转的4种机制进行了详细剖析,并深入讨论了每种反转机制的特征及产生的条件。  相似文献   

7.
Ferroelectric materials have emerged in recent years as an alternative to magnetic and dielectric materials for nonvolatile data-storage applications. Lithography is widely used to reduce the size of data-storage elements in ultrahigh-density memory devices. However, ferroelectric materials tend to be oxides with complex structures that are easily damaged by existing lithographic techniques, so an alternative approach is needed to fabricate ultrahigh-density ferroelectric memories. Here we report a high-temperature deposition process that can fabricate arrays of individually addressable metal/ferroelectric/metal nanocapacitors with a density of 176 Gb inch(-2). The use of an ultrathin anodic alumina membrane as a lift-off mask makes it possible to deposit the memory elements at temperatures as high as 650 degrees C, which results in excellent ferroelectric properties.  相似文献   

8.
Dependence of spin torque induced magnetization switching upon interfacial insulating layers properties of magnetic tunneling junctions (MTJ) are studied. For the same magnetic properties and patterning geometric dimensions, changes in MTJ interfacial insulating layers properties reveal interesting magnetization switching behaviors. These behaviors cannot be explained by conventional Landau-Lifshitz-Gilbert equation with a spin torque term and an intrinsic ferromagnetic relaxation damping. However the magnetization switching dynamics can be understood through assumption of spin pumping effects in magnetic tunneling junctions. This is not only important for fundamental understanding of spin and electronic transport in MTJ but also important for practical trade-offs between critical switching current and MTJ resistance for spin torque random access memory.  相似文献   

9.
The magnetization states in Ni triangular dots under an applied magnetic field have been studied using variable-field magnetic force microscopy (VF-MFM) imaging. In order to understand their dynamics we performed micromagnetic simulations which are in remarkable agreement with the experimental MFM results. The nanostructures present magnetic vortices as ground states which move under an external magnetic field. The combination of micromagnetic simulations and MFM imaging allows us to identify correctly the vortex chiralities and polarizations. The triangular geometry produces an improved contrast of the vortex core. Additionally, the vortices of different chiralities present clearly different MFM images under an?applied field.  相似文献   

10.
We demonstrate magnetic switching between two 360° domain wall vortex states in cobalt nanorings, which are candidate magnetic states for robust and low power magnetoresistive random access memory (MRAM) devices. These 360° domain wall (DW) or 'twisted onion' states can have clockwise or counterclockwise circulation, the two states for data storage. Reliable switching between the states is necessary for any realistic device. We accomplish this switching by applying a circular Oersted field created by passing current through a metal atomic force microscope tip placed at the center of the ring. After initializing in an onion state, we rotate the DWs to one side of the ring by passing a current through the center, and can switch between the two twisted states by reversing the current, causing the DWs to split and meet again on the opposite side of the ring. A larger current will annihilate the DWs and create a perfect vortex state in the rings.  相似文献   

11.
Magnetic vortices are typically the ground states in geometrically confined ferromagnets with small magnetocrystalline anisotropy. In this article I review static and dynamic properties of the magnetic vortex state in small particles with nanoscale thickness and sub-micron and micron lateral sizes (magnetic dots). Magnetic dots made of soft magnetic material shaped as flat circular and elliptic cylinders are considered. Such mesoscopic dots undergo magnetization reversal through successive nucleation, displacement and annihilation of magnetic vortices. The reversal process depends on the stability of different possible zero-field magnetization configurations with respect to the dot geometrical parameters and application of an external magnetic field. The interdot magnetostatic interaction plays an important role in magnetization reversal for dot arrays with a small dot-to-dot distance, leading to decreases in the vortex nucleation and annihilation fields. Magnetic vortices reveal rich, non-trivial dynamical properties due to existance of the vortex core bearing topological charges. The vortex ground state magnetization distribution leads to a considerable modification of the nature of spin excitations in comparison to those in the uniformly magnetized state. A magnetic vortex confined in a magnetically soft ferromagnet with micron-sized lateral dimensions possesses a characteristic dynamic excitation known as a translational mode that corresponds to spiral-like precession of the vortex core around its equilibrium position. The translation motions of coupled vortices are considered. There are, above the vortex translation mode eigenfrequencies, several dynamic magnetization eigenmodes localized outside the vortex core whose frequencies are determined principally by dynamic demagnetizing fields appearing due to restricted dot geometry. The vortex excitation modes are classified as translation modes and radially or azimuthally symmetric spin waves over the vortex ground state. Studying the spin eigenmodes in such systems provides valuable information to relate the particle dynamical response to geometrical parameters. Unresolved problems are identified to attract attention of researchers working in the area of nanomagnetism.  相似文献   

12.
Magnetic materials provide the most important form of erasable data storage for information technology today. The demand for increased storage capacity has caused bit sizes and features of the read-write transducers to be reduced to the nanoscale. However, increased storage capacity is only useful if there is a commensurate reduction in the time taken to read and write the data. In this article, the basic principles that determine the behaviour of nanomagnetic materials are introduced and their use in data-storage systems is described. Particular attention is paid to processes that limit the speed of operation of the data-storage system. It is shown that optical pump-probe experiments may be used to characterize dynamic magnetic processes with femtosecond temporal resolution. The macroscopic magnetization of a ferromagnet can be made to precess in response to an optically triggered magnetic field pulse, leading to reduced switching times. Alternatively, an ultrashort laser pulse may be used to manipulate the magnitude of the magnetization on femtosecond time-scales, leading to an ultrafast demagnetization in certain ferromagnets, and providing new insight into magnetotransport phenomena. Finally, the outlook for increased record and replay rates is assessed and the prospect of further use of optical techniques within magnetic data-storage technology is discussed.  相似文献   

13.
Spin–orbit torque (SOT)‐induced magnetization switching exhibits chirality (clockwise or counterclockwise), which offers the prospect of programmable spin‐logic devices integrating nonvolatile spintronic memory cells with logic functions. Chirality is usually fixed by an applied or effective magnetic field in reported studies. Herein, utilizing an in‐plane magnetic layer that is also switchable by SOT, the chirality of a perpendicular magnetic layer that is exchange‐coupled with the in‐plane layer can be reversed in a purely electrical way. In a single Hall bar device designed from this multilayer structure, three logic gates including AND, NAND, and NOT are reconfigured, which opens a gateway toward practical programmable spin‐logic devices.  相似文献   

14.
Jung Y  Lee SH  Jennings AT  Agarwal R 《Nano letters》2008,8(7):2056-2062
Phase-change memory, which switches reversibly between crystalline and amorphous phases, is promising for next generation data-storage devices. In this work, we present a novel, nonbinary data-storage device using core-shell nanowires to significantly enhance memory capacity by combining two phase-change materials with different electronic and thermal properties to engineer different onsets of amorphous-crystalline transitions. Electric-field induced sequential amorphous-crystalline transition in core-shell nanowires displays three distinct electronic states with high, low, and intermediate resistances, assigned as data "0", "1", and "2".  相似文献   

15.
Detailed investigations have been carried out on two-junction interferometers. These devices have potential as memory elements. Information is stored as single-flux quanta (SFQ cells) in overlapping vortex modes and is destructively read out by switching from a vortex to the voltage state. The devices are fabricated with a lead alloy and the junction oxide is formed by rf oxidation. Most investigations have been done on devices with an area of about 1000 μm2, but storage and reading have also been demonstrated in our smallest interferometers having a size of about 150 μm2. Computer studies of cell properties, especially of the vortex transitions, have given good agreement with experiments. It has also been found that the cell behavior is little affected by loads such as would exist in an array environment.  相似文献   

16.
17.
Memristive devices whose resistance can be hysteretically switched by electric field or current are intensely pursued both for fundamental interest as well as potential applications in neuromorphic computing and phase-change memory. When the underlying material exhibits additional charge or spin order, the resistive states can be directly coupled, further allowing electrical control of the collective phases. The observation of abrupt, memristive switching of tunneling current in nanoscale junctions of ultrathin CrI3, a natural layer antiferromagnet, is reported here. The coupling to spin order enables both tuning of the resistance hysteresis by magnetic field and electric-field switching of magnetization even in multilayer samples.  相似文献   

18.
The pervasiveness of information technologies is generating an impressive amount of data, which need to be accessed very quickly. Nonvolatile memories (NVMs) are making inroads into high‐capacity storage to replace hard disk drives, fuelling the expansion of the global storage memory market. As silicon‐based flash memories are approaching their fundamental limit, vertical stacking of multiple memory cell layers, innovative device concepts, and novel materials are being investigated. In this context, emerging 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorous, offer a host of physical and chemical properties, which could both improve existing memory technologies and enable the next generation of low‐cost, flexible, and wearable storage devices. Herein, an overview of graphene and related 2D materials (GRMs) in different types of NVM cells is provided, including resistive random‐access, flash, magnetic and phase‐change memories. The physical and chemical mechanisms underlying the switching of GRM‐based memory devices studied in the last decade are discussed. Although at this stage most of the proof‐of‐concept devices investigated do not compete with state‐of‐the‐art devices, a number of promising technological advancements have emerged. Here, the most relevant material properties and device structures are analyzed, emphasizing opportunities and challenges toward the realization of practical NVM devices.  相似文献   

19.
As fabrication technology pushes the dimensions of ferromagnetic structures into the nanoscale, understanding the magnetization processes of these structures is of fundamental interest, and key to future applications in hard disk drives, magnetic random access memory and other 'spintronic' devices. Measurements on elongated magnetic nanostructures highlighted the importance of nucleation and propagation of a magnetic boundary, or domain wall, between opposing magnetic domains in the magnetization reversal process. Domain-wall propagation in confined structures is of basic interest and critical to the performance of a recently demonstrated magnetic logic scheme for spintronics. A previous study of a 500-nm-wide NiFe structure obtained very low domain-wall mobility in a three-layer device. Here we report room-temperature measurements of the propagation velocity of a domain wall in a single-layer planar Ni80Fe20 ferromagnetic nanowire 200 nm wide. The wall velocities are extremely high and, importantly, the intrinsic wall mobility is close to that in continuous films, indicating that lateral confinement does not significantly affect the gyromagnetic spin damping parameter to the extreme extent previously suggested. Consequently the prospects for high-speed domain-wall motion in future nanoscale spintronic devices are excellent.  相似文献   

20.
Chalcogenide films with reversible amorphous-crystalline phase transitions have been commercialized as optically rewritable data-storage media, and intensive effort is now focused on integrating them into electrically addressed non-volatile memory devices (phase-change random-access memory or PCRAM). Although optical data storage is accomplished by laser-induced heating of continuous films, electronic memory requires integration of discrete nanoscale phase-change material features with read/write electronics. Currently, phase-change films are most commonly deposited by sputter deposition, and patterned by conventional lithography. Metal chalcogenide films for transistor applications have recently been deposited by a low-temperature, solution-phase route. Here, we extend this methodology to prepare thin films and nanostructures of GeSbSe phase-change materials. We report the ready tuneability of phase-change properties in GeSbSe films through composition variation achieved by combining novel precursors in solution. Rapid, submicrosecond phase switching is observed by laser-pulse annealing. We also demonstrate that prepatterned holes can be filled to fabricate phase-change nanostructures from hundreds down to tens of nanometres in size, offering enhanced flexibility in fabricating PCRAM devices with reduced current requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号