首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A random walk Monte Carlo(RWMC)simulation model of catalytic particle was established on the basis of the structures of bismuth molybdate catalysts and mechanisms of catalytic reactions with propylene selective oxidation and ammoxidation.The simulation results show that rationality of the RWMC model is proved on the basis of pulse experimental data.One of the most remarkable factors affecting catalytic behavior is the transfer of bulk lattice oxygen,which decides the rate of ammonia-consuming and propylene-consuming.The selectivity of main products reaches the maximum after the reduction of catalysts to a certain degree.It is inferred that catalytic performance improves greatly if the ratio of capacity for dehydrogenation from adsorbed propylene molecule on catalytically active site of molybdenum metal-imido group(Mo=NH)to that on catalytically active site of molybdenum metal-oxo group(Mo=O)becomes much higher.  相似文献   

2.
The catalytically active components of a series of Fe_2O_3-Sb_2O_4 mixed oxide catalysts with differentSb/Fe ratio,calcined at elevated temperature,as well as with or without support,have been investigated byX-ray diffraction analysis,Mossauer spectroscopy and XPS in order to elucidate their catalytic behavior inammoxidation of propylene.Correlations of acrylonitrile yield with Fe~2 and Fe~3 respectively showed that,FeSbO_4 seems to bethe basic active component of catalyst,upon which the formation of new phase containing Fe~3 is responsiblefor a good selective oxidation.  相似文献   

3.
The catalytic hydrogenation ofp-nitrophenol to p-aminophenol was investigated over Ni/TiO2 catalysts prepared by a liquid-phase chemical reduction method. The catalysts were characterized by inductively coupled plasma (ICP), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and temperature-programmed reduction (TPR). Results show that the titania structure has favorable influence on physio-chemical and catalytic properties of Ni/TiO2 catalysts. Compared to commercial Raney nickel, the catalytic activity of Ni/TiO2 catalyst is much superior, irrespective of the titania structure. The catalytic activity of anatase titania supported nickel catalyst Ni/TiO2(A) is higher than that of rutile titania supported nickel catalyst Ni/TiO2(R), possibly because the reduction of nickel oxide to metallic nickel for Ni/TiO2(A) is easier than that for Ni/TiO2(R) at similar reaction conditions.  相似文献   

4.
Selective propylene epoxidation to propylene oxide(PO) with hydrogen peroxide(H_2O_2) was carried out in a catalytic semi-batch reactor.High propylene epoxidation activity(44 h~(-1)) was observed over Nb based mesoporous silicate materials Nb-TUD-1 under mild operating conditions.The physical and chemical properties of the Nb based silicates characterized using BET,FTIR,TPD,TEM and UV–Vis revealed that the site isolation and surface acidity are crucial for PO production.Catalyst synthesis methods were investigated for their effects on PO productivity,PO selectivity and H_2O_2 utilization efficiency.It is found that Nb-TUD-1 material synthesized by the sol–gel method is more active and selective than impregnated materials for liquid phase propylene epoxidation.Surface characterization confirms that thus synthesized Nb-TUD-1 catalysts have more Lewis acidity and less Bronsted acidity compared to the catalysts by impregnation.  相似文献   

5.
Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_2 catalysts are prepared by impregnation and reduced by NaBH_4.The effects of loading amount of Pt and cry stal type of TiO_2 on the physical and chemical properties and the catalytic performance in HCHO oxidation reaction are investigated.The results show that the quantity of active site and the oxygen vacancy of catalysts increa sed with increasing Pt content,which is beneficial to promote the further performance of catalysts.Nevertheless,with the further rises of Pt content,the specific surface area further decreases,and the proportion of Pt~(2+) species on the catalyst surface which is significant to catalytic properties also decreases,causing catalytic performance decreases.Compared with the catalyst supporting on rutile,the Pt/α-TiO_2 catalyst supporting on anatase has larger specific surface area,more Pt~(2+) phase and easier to form oxygen vacancy in the support,which cause better catalytic performance.The catalyst with Pt content of0.1 wt% and supported by anatase TiO_2 has the best catalytic performance.The HCHO conversion efficiency reaches 98% and 100% at 50℃ and 100 ℃, and the stabilization time is longer than 140 h.  相似文献   

6.
Four ZSM-5 zeolite catalysts with different Si/Al ratios for the catalytic cracking of C4 fractions to produce ethylene and propylene were prepared in this study.First,the adsorption isotherms of pure n-butane and butene-1 and their mixtures on these catalysts at 300K and p=0—100kPa were measured using the intelligent gravimetric analyzer.The experimental results indicate that the presence of Al can significantly affect the adsorption of butene-1 than that of n-butane on ZSM-5 zeolites.Then,the double Langmuir(DL)model was applied to study the pure gas adsorption on ZSM-5 zeolites for pure n-butane and butene-1.By combining the DL model with the ideal adsorbed solution theory(IAST),the IAST-DL model was applied to model the butene-1(1)/n-butane(2)binary mixture adsorption on ZSM-5 zeolites with different Si/Al ratios.The calculated results are in good agreement with the experimental data,indicating that the IAST-DL model is effective for the present systems.Finally,the adsorption over a wide range of variables was predicted at low pressure and 300K by the model proposed.It is found that the selectivity of butene-1 over n-butane increases linearly with the decrease of Si/Al ratio.A correlation between the selectivity and Si/Al ratio of the sample was proposed at 300K and p=0.08MPa.  相似文献   

7.
The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the main reason to make disappearance of the hydrocarbons. The work in this field has often been the subject of much research work in recent years. In this paper, the thermodynamics of CH4-CaSO4 and H2S-Fe2O3 systems is discussed to investigate the possibility of reactions. It is found that these two reactions can proceed spontaneously.Increasing temperature is favorite for CH4-CaSO4 system but disfavorite for H2S-Fe2O3 system. Thermal simulation experiments were carried out using autoclave at high temperature and high pressure. The properties of the products were characterized by microcoulometry, FT-IR and XRD methods. On the basis of the experimental data, a reaction kinetic model is developed and kinetic parameters are determined.  相似文献   

8.
Two anode catalysts with Pt, MoS2 and composite metal sulfides (MoS2 NiS), are investigated for electrochemical oxidation of hydrogen sulfide in solid oxide fuel cell (SOFC) at temperatures 750-850℃. The catalysts comprising MoS2 and MoS2 NiS exhibited good electrical conductivity and catalytic activity. MoS2 and composite catalysts were found to be more active than Pt, a widely used catalyst for high temperature H2S/O2 fuel cell at 750-850℃. However, MoS2 itself sublimes above 450℃. In contrast, composite catalysts containing both Mo and transition metal (Ni) are shown to be stable and effective in promoting the oxidation of H2S in SOFC up to 850℃. However, electric contact is poor between the platinum current collecting layer and the composite metal sulfide layer, so that the cell performance becomes worse. This problem is overcome by adding conductive Ag powder into the anode layer (forming MoS2 NiS Ag anode material) to increase anode electrical conductance instead of applying a thin laver of platinum on the top of anode.  相似文献   

9.
Selective synthesis of ethanol from syngas under the Co-based catalysts is still challenging due to the hard of regulating the active site Co0 and Co2+ ratio.In this work,a series of CaTi0.9-xCoxMo0.1O3(x=0,0.1–0.4) and CaTi0.7Co0.3O3 catalysts were prepared by using citric acid complexation method to promote the synthesis of ethanol.It was found that Mo species in the perovskite lattice can regula...  相似文献   

10.
The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The reforming reactions were carried out at atmosphenc pressure in the temperature range of 500-2700℃. The activity and stability of the catalyst, carbon formation, and syngas (H2/CO) ratio were determined. Various techniques were applied for characterization of both fresh and used catalysts. Addition of La2O3 to the catalyst matrix improved the dispersion of Ni and adsorption of CO2, thus its activity and stability enhanced.  相似文献   

11.
N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4C1 as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation parameters and their impact on the structure and photocatalytic activity under ultraviolet (UV) and visible light irra-diation were carried out. Multiple techniques (XRD, TEM, DRIF, DSC, and XPS) were commanded to characterize the crystal structures and chemical binding of N-doped TiO2. Its photocatalytic activity was examined by the deg- radation of organic compounds. The catalytic activity of the prepared N-doped TiO2 nanoparticles under visible light (λ〉400nm) irradiation is evidenced by the decomposition of 4-chlorophenol, showing that nitrogen atoms in the N-doped TiO2 nanoparticle catalyst are responsible for the visible light catalytic activity. The N-doped TiO2 nanoparticle catalyst prepared with this modified route exhibits higher catalytic activity under UV irradiation in contrast to TiO2 without N-doping. It is suggested that the doped nitrogen here is located at the interstitial site of TiO2 lattice.  相似文献   

12.
Vapor-liquid equilibrium (VLE) data for water + 2-propanol + 1-butyl-3-methylimidazolium chloride ([bmim]Cl) were measured. Six sets of complete T, x, y data are reported, in which the 2-propanol mole fraction on IL-free basis is fixed separately at 0.1, 0.2, 0.4, 0.6, 0.8, and approximate 0.98, while the IL mass fraction is varied from 0.1 to 0.8, in an interval of 0.1. The non-random-two-liquid (NRTL) and electrolyte non-random-two-liquid (eNRTL) equations are used to correlate the experimental data with satisfactory results. The ternary VLE behavior is also modeled with the parameters obtained by correlating two data sets, in which the mole fraction of 2-propanol on IL-free basis is approximately 0.1 and 0.98. In this way, the six sets of data are reproduced satisfactorily. With the eNRTL model, the root-mean-square deviation for temperature is 0.82 K and that for vapor-phase mole fraction is 0.0078. The influences of IL on activity coefficients and relative volatility of the volatile components are also graphically illustrated.  相似文献   

13.
CO2 gasification of Fuijian high-metamorphous anthracite with black liquor (BL) and/or mixture of BL and calcium stuff (BL+Ca) as catalyst was studied by using a thermogravimetry under 750-950℃ at ambient pressure. When the coal was impregnated with an appropriate quantity of Ca and BL mixture, the catalytic activity of CO2 gasification was enhanced obviously. With a loading of 8%Na-BL+2%Ca, the carbon conversion of three coal samples tested reaches up to 92.9%-99.3% at 950℃ within 30min. The continuous formation of alkali surface compounds such as ([-COM], [-CO2M]) and the presence of exchanged Ca, such as calcium phenolate and calcium carboxylates (COO)2Ca, contribute to the increase in catalytic efficiency, and using BL+Ca is more efficient than that adding BL only, The homogeneous model and shrinking-core model were applied to correlate the data of conversion with time and to estimate the reaction rate constants under different temperature. The corresponding reaction activation energy (Ea) and pre-exponential factor of three anthracites were estimated. It is found that Ea is in the range from 73.6 to 121.4kJ·mol^-1 in the case of BL+Ca, and 74.3 to 104.2kJ·mol^-1 when only BL was used as the catalyst, both of which are much less than that from 143.5 to 181.4kJ·mol^-1 if no catalyst used. It is clearly demonstrated that both of BL+Ca mixture and BL could be the source of cheap and effective catalyst for coal gasification.  相似文献   

14.
工业PTA溶剂脱水过程动态模拟与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.  相似文献   

15.
Silver modified HZSM-5 (AgHZ) zeolite catalysts were prepared by ion exchange method and their catalytic properties in the 1-butene cracking reaction were measured. The catalysts were characterized by infrared spec-troscopy with pyridine adsorption (Py-IR), N2 adsorption and X-ray diffraction (XRD). The effects of Ag loading and steaming treatment on catalytic performances were studied. It is found that the activity of HZSM-5 (HZ) cat-alyst significantly decreases with the steaming time, whereas AgHZ catalysts show stable activity in the steaming time of 24–48 h and their activities increase with the Ag loading. When the steaming time is 24–48 h, the yield of propylene over HZ catalyst significantly decreases, whereas it is stable over AgHZ catalysts. The AgHZ catalysts with Ag loadings of 0.28%–0.43%(by mass) show similar propylene yields (~30%), which are higher than that over the AgHZ catalyst with a Ag loading of 0.55%(by mass). These results indicate that the steam-treated AgHZ catalysts with optimum Ag loadings have higher yield of propylene and are more stable than the steam-treated HZ catalyst. The regeneration stability measurement in butene cracking also shows that the AgHZ catalyst steam-treated under a suitable condition has better stability than the HZ catalyst.  相似文献   

16.
In this work, NiMo catalysts with various contents of MoO_3 were prepared through incipient wetness impregnation by a two-step method(NM-x A) and one-pot method(NM-xB). The catalysts were then characterized by XRD, XPS, NH_3-TPD, H_2-TPR, HR-TEM, and N2 adsorption–desorption technologies.The performance of the NiMo/Al_2O_3 catalysts was investigated by hydrocracking low-temperature coal tar. When the MoO_3 content was 15 wt%, the interaction between Ni species and Al_2O_3 on the NM-15 B catalyst was stronger than that on the NM-15 A catalyst, resulting in the poor performance of the former.When the MoO_3 content was 20 wt%, MoO_3 agglomerated on the surface of the NM-20 A catalyst, leading to decreased number of active sites and specific surface area and reduced catalytic performance. The increase in the number of MoS_2 stack layers strengthened the interaction between Ni and Mo species of the NM-20 B catalyst and consequently improved its catalytic performance. When the MoO_3 content reached 25 wt%, the active metals agglomerated on the surface of the NiMo catalysts, thereby directly decreasing the number of active sites. In conclusion, the two-step method is suitable for preparing catalysts with large pore diameter and low MoO_3 content loading, and the one-pot method is more appropriate for preparing catalysts with large specific surface area and high MoO_3 content. Moreover, the NMx A catalysts had larger average pore diameter than the NM-xB catalysts and exhibited improved desulfurization performance.  相似文献   

17.
PTFE-F-PbO2 电极在H2SO4溶液中的析氧行为   总被引:1,自引:0,他引:1  
F-PbO2 electrode and polytetrafluoroethylene (PTFE) doped F-PbO2 electrode (PTFE-F-PbO2) were prepared on a plexiglas sheet substrate by a series of procedure including chemical and electrochemical depositions. The electrochemical activities of these two electrodes for oxygen evolution (OE) reaction were examined by electrochemical tests. In comparison with F-PbO2, PTFE-F-PbO2 electrode exhibited larger active surface area and higher oxygen vacancy deficiency, which resulted in its higher electrocatalytic activity for OE. In addition, both exchange current density and activation energy of the electrodes for OE were calculated in terms of active surface area. The values of exchange current density and activation energy in 0.5 mol·L^-1 H2SO4 aqueous solution were 1.125×10^ -3 mA·cm^-2 and 18.62 kJ·mol^-1 for PTFE-F-PbO2, and 8.384×10^-4 mA·cm^- 2 and 28.98 kJ·mol^-1 for F-PbO2, respectively. Because these values are calculated on the basis of the active surface areas of the electrodes, the enhanced activity of PTFE-F-PbO2 can be attributed to an increase in oxygen vacancy deficiency of PbO2 due to doping by PTFE. The influence of PTFE adulteration on the activity of PbO2 film electrode for OE was investigated in detail in this study.  相似文献   

18.
19.
MDEA吸收CO2稳态模型的数值求解方法   总被引:1,自引:0,他引:1  
The shooting method and the difference method are used for numerical simulation of CO2 absorption with aclueous solution of methyldiethanolamine (MDEA). It is demonstrated that these methods axe available for the steady-state model, which may be expressed as a set of differential algebraic equations (DAEs) with two-point boundary values. This method makes it possible not only to obtain the concentration profiles for MDEA system, but also to reveal the effect of CO2 interfacial concentration on the enhancement factor. With this numerical simulation,the mass transfer process with multicomponent diffusion and reactions can be better understood.  相似文献   

20.
A mathematical model for extraction of red pepper seed oil with supercritical CO2 was proposed. Some factors influencing the process were investigated, including operation pressure, temperature and extraction yield Xe (%). The model was solved by the method of weighted residuals and used to simulate the process numerically. The kinetic equation is expressed as Xe =-16.8606exp(-t/9.98177) + 16.95457 and the simulation results are in excellent agreement with the experimental data. The optimal operating parameters are 30 MPa, 318 K and 60 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号