共查询到17条相似文献,搜索用时 80 毫秒
1.
为了提高生成对抗网络模型对抗样本的多样性和攻击成功率,提出了一种GAN图像对抗样本生成方法.首先,利用原始样本集整体训练一个深度卷积对抗生成网络G1,模拟原始样本集分布;其次,在黑盒攻击场景下,利用模型蒸馏方法对目标模型进行黑盒复制,获取目标模型的本地复制;然后以G1的输出作为输入,以蒸馏模型作为目标模型,训练生成对抗... 相似文献
2.
图像去雾是图像处理中的一个重要研究方向。为了提高对图像的去雾效率,文章通过改进大气散射模型,基于生成对抗网络(Generative Adversarial Network,GAN)算法实现图像去雾。该方法实现步骤如下,首先将有雾图像分解为无雾图像和经过雾散射后的环境自然光叠加,其次通过生成器网络生成大气散射光图像,估算透射率从而求解无雾图像,最后利用GAN网络的生成器和判别器网络进行对抗训练,得到接近真实的大气环境光和透射率,达到对图像快速去雾的目的。实验结果表明,设计方法在合成雾天图像和真实雾天图像中均取得了较好的去雾效果,虽然在客观评价指标上与经典的去雾算法保持相同水平,但时间消耗远少于其他算法。 相似文献
3.
汉字字体风格迁移旨在保证在语义内容不变的同时对汉字的字形作相应的转换。由于深度学习在图像风格迁移任务中表现出色,因此汉字生成可以从汉字图像入手,利用此技术实现汉字字体的转换,减少字体设计的人工干预,减轻字体设计的工作负担。然而,如何提高生成图像的质量仍是一个亟待解决的问题。本文首先系统梳理了当前汉字字体风格迁移的相关工作,将其分为3类,即基于卷积神经网络(convolutional neural network,CNN)、自编码器(auto-encoder,AE)和生成对抗网络(generative adversarial network,GAN)的汉字字体风格迁移方法。然后,对比分析了22种汉字字体风格迁移方法在数据集规模方面的需求和对不同字体类别转换的适用能力,并归纳了这些方法的特点,包括细化汉字图像特征、依赖预训练模型提取有效特征、支持去风格化等。同时,按照汉字部首检字表构造包含多种汉字字体的简繁体汉字图像数据集,并选取代表性的汉字字体风格迁移方法进行对比实验,实现源字体(仿宋)到目标字体(印刷体和手写体)的转换,展示并分析Rewrite2、zi2zi、TET-GAN(texture effects transfer GAN)和Unet-GAN等4种代表性汉字字体风格迁移方法的生成效果。最后,对该领域的现状和挑战进行总结,展望该领域未来发展方向。由于汉字具有数量庞大和风格多样的特性,因此基于深度学习的汉字生成与字体风格迁移技术还不够成熟。未来该领域将从融合汉字的风格化与去风格化为一体、有效提取汉字特征等方面进一步探索,使字体设计工作向更灵活、个性化的方向发展。 相似文献
4.
多聚焦图像融合是一种以软件方式有效扩展光学镜头景深的技术,该技术通过综合同一场景下多幅部分聚焦图像包含的互补信息,生成一幅更加适合人类观察或计算机处理的全聚焦融合图像,在数码摄影、显微成像等领域具有广泛的应用价值。传统的多聚焦图像融合方法往往需要人工设计图像的变换模型、活跃程度度量及融合规则,无法全面充分地提取和融合图像特征。深度学习由于强大的特征学习能力被引入多聚焦图像融合问题研究,并迅速发展为该问题的主流研究方向,多种多样的方法不断提出。鉴于国内鲜有多聚焦图像融合方面的研究综述,本文对基于深度学习的多聚焦图像融合方法进行系统综述,将现有方法分为基于深度分类模型和基于深度回归模型两大类,对每一类中的代表性方法进行介绍;然后基于3个多聚焦图像融合数据集和8个常用的客观质量评价指标,对25种代表性融合方法进行了性能评估和对比分析;最后总结了该研究方向存在的一些挑战性问题,并对后续研究进行展望。本文旨在帮助相关研究人员了解多聚焦图像融合领域的研究现状,促进该领域的进一步发展。 相似文献
5.
6.
由于肝脏肿瘤图像复杂多样且肝脏肿瘤图像数据集获取困难等问题,快速准确地诊断肝脏肿瘤疾病面临着诸多挑战,尤其是肝脏肿瘤的分割是其中的关键研究内容。生成对抗网络在半监督学习领域具有强大的优越性,因此其在医学图像处理中得到广泛应用。为了分析肝脏肿瘤图像在分割领域的现状以及未来发展,针对应用GAN的肝脏肿瘤图像分割方法进行研究,介绍GAN模型的网络结构与衍生模型,重点总结并分析生成对抗网络在肝脏肿瘤图像分割中的应用,包括基于网络结构改进的GAN方法、基于生成器或判别器改进的GAN方法和基于GAN的其他改进方法。最后在已有的研究进展和基础之上,对GAN在肝脏肿瘤图像分割中的应用进行总结,讨论GAN在肝脏肿瘤图像分割上所面临的挑战,并对其未来发展进行展望。 相似文献
7.
生成对抗网络(GAN)作为一种新的无监督学习算法框架得到越来越多研究者的青睐,已然成为当下的一个研究热点。GAN受启发于博弈论中的二人零和博弈理论,其独特的对抗训练思想能生成高质量的样本,具有比传统机器学习算法更加强大的特征学习和特征表达能力。目前GAN在计算机视觉领域尤其是在样本生成领域取得显著成功,每年有大量GAN相关研究的论文产出。针对GAN这一热点模型,首先介绍了GAN的研究现状;接着介绍了GAN的理论、框架,详细分析了GAN在训练过程中存在梯度消失和模式崩溃的原因;然后讨论了一些典型的GAN的改进模型,总结了它们理论的改进之处、优点、局限性、应用场景以及实现成本,同时还将GAN与VAE、RBM模型进行比较,总结出GAN的优势和劣势;最后展示了GAN在数据生成、图像超分辨率、图像风格转换等方面的应用成果,并探讨了GAN目前面临的挑战以及未来的研究方向。 相似文献
8.
目的 数字图像的真实性问题备受人们关注,被动取证是解决该问题的有效途径。然而,如果伪造者在篡改图像的同时利用反取证技术对篡改的痕迹进行消除或伪造,那么已有的大量被动取证技术都将失效。回顾图像反取证技术的研究现状(包括兴起原因、实现原理、技术特点以及应用前景),并根据已有文献总结反取证技术面临的主要挑战和机遇。方法 由于现有的被动取证技术大都基于遗留痕迹和固有特征的异同来辨识图像真伪,因此本文以不同的取证特征为线索来评述和比较反取证技术的原理和策略。结果 根据取证特征的不同,将反取证技术归纳为遗留痕迹隐藏、固有特征伪造和反取证检测等三类,并展示了当前各类反取证技术面临的难点和挑战。结论 对数字图像反取证技术进行总结和展望,并指出其算法未来在通用性、安全性、可靠性等方面将有待进一步的深入研究。 相似文献
9.
针对现有卷积神经网络图像超分辨率算法容易出现过拟合、损失函数的收敛性不足等问题,结合超分辨率算法和生成式对抗网络(GAN)理论,设计一种基于生成式对抗网络的超分辨率算法PESRGAN用于恢复四倍下采样的图像。首先使用残差密集块(RDB)作为基本结构单元,有效避免了过拟合问题;其次使用双层特征损失并使用渗透指数(PI)作为损失的权值,更好地去学习低分辨率到高分辨率图像之间的映射关系;同时使用VGG19作为判别网络高分辨率图像进行分类;最后使用经典数据集,将PESRGAN算法与双三次插值(Bicubic)、SRGAN、ESRGAN算法在客观参数和主观视觉效果进行对比。实验结果表明:在经典数据集上,PESRGAN的平均峰值信噪比(PSNR)达到25.4 dB、平均结构相似性(SSIM)达到0.73,平均渗透指数(PI)达到1.15,在客观参数和主观评价上均优于其他算法,证明了PESRGAN有良好的超分辨率重建的效果。 相似文献
10.
目的 动漫制作中线稿绘制与上色耗时费力,为此很多研究致力于动漫制作过程自动化。目前基于数据驱动的自动化研究工作快速发展,但并没有一个公开的线稿数据集可供使用。针对真实线稿图像数据获取困难,以及现有线稿提取方法效果失真等问题,提出基于循环生成对抗网络的线稿图像自动提取模型。方法 模型基于循环生成对抗网络结构,以解决非对称数据训练问题。然后将不同比例的输入图像及其边界图输入到掩码指导卷积单元,以自适应选择网络中间特征。同时为了进一步提升网络提取线稿的效果,提出边界一致性约束损失函数,确保生成结果与输入图像在梯度变化上的一致性。结果 在公开的动漫彩色图像数据集Danbooru2018上,应用本文模型提取的线稿图像相比于现有线稿提取方法,噪声少、线条清晰且接近真实漫画家绘制的线稿图像。实验中邀请30名年龄在2025岁的用户,对本文以及其他4种方法提取的线稿图像进行打分。最终在30组测试样例中,本文方法提取的线稿图像被认为最佳的样例占总样例84%。结论 通过在循环生成对抗网络中引入掩码指导单元,更加合理地提取彩色图像的线稿图像,并通过对已有方法提取效果进行用户打分证明,在动漫线稿图像提取中本文方法优于对比方法。此外,该模型不需要大量真实线稿图像训练数据,实验中仅采集1 000幅左右真实线稿图像。模型不仅为后续动漫绘制与上色研究提供数据支持,同时也为图像边缘提取方法提供了新的解决方案。 相似文献
11.
12.
目的 将半监督对抗学习应用于图像语义分割,可以有效减少训练过程中人工生成标记的数量。作为生成器的分割网络的卷积算子只具有局部感受域,因此对于图像不同区域之间的远程依赖关系只能通过多个卷积层或增加卷积核的大小进行建模,但这种做法也同时失去了使用局部卷积结构获得的计算效率。此外,生成对抗网络(generative adversarial network, GAN)中的另一个挑战是判别器的性能控制。在高维空间中,由判别器进行的密度比估计通常是不准确且不稳定的。为此,本文提出面向图像语义分割的半监督对抗学习方法。方法 在生成对抗网络的分割网络中附加两层自注意模块,在空间维度上对语义依赖关系进行建模。自注意模块通过对所有位置的特征进行加权求和,有选择地在每个位置聚合特征。因而能够在像素级正确标记值数据的基础上有效处理输入图像中广泛分离的空间区域之间的关系。同时,为解决提出的半监督对抗学习方法的稳定性问题,在训练过程中将谱归一化应用到对抗网络的判别器中,这种加权归一化方法不仅可以稳定判别器网络的训练,并且不需要对唯一的超参数进行密集调整即可获得满意性能,且实现简单,计算量少,即使在缺乏互补的正则化... 相似文献
13.
目的 现有的基于深度学习的单帧图像超分辨率重建算法大多采用均方误差损失作为目标优化函数,以期获得较高的图像评价指标,然而重建出的图像高频信息丢失严重、纹理边缘模糊,难以满足主观视觉感受的需求。同时,现有的深度模型往往通过加深网络的方式来获得更好的重建效果,导致梯度消失问题的产生,训练难度增加。为了解决上述问题,本文提出融合感知损失的超分辨率重建算法,通过构建以生成对抗网络为主体框架的残差网络模型,提高了对低分率图像的特征重构能力,高度还原图像缺失的高频语义信息。方法 本文算法模型包含生成器子网络和判别器子网络两个模块。生成器模块主要由包含稠密残差块的特征金字塔构成,每个稠密残差块的卷积层滤波器大小均为3×3。通过递进式提取图像不同尺度的高频特征完成生成器模块的重建任务。判别器模块通过在多层前馈神经网络中引入微步幅卷积和全局平均池化,有效地学习到生成器重建图像的数据分布规律,进而判断生成图像的真实性,并将判别结果反馈给生成器。最后,算法对融合了感知损失的目标函数进行优化,完成网络参数的更新。结果 本文利用峰值信噪比(PSNR)和结构相似度(SSIM)两个指标作为客观评价标准,在Set5和Set14数据集上测得4倍重建后的峰值信噪比分别为31.72 dB和28.34 dB,结构相似度分别为0.892 4和0.785 6,与其他方法相比提升明显。结论 结合感知损失的生成式对抗超分辨率重建算法准确恢复了图像的纹理细节,能够重建出视觉上舒适的高分辨率图像。 相似文献
14.
目的 在日常的图像采集工作中,由于场景光照条件差或设备的补光能力不足,容易产生低照度图像。为了解决低照度图像视觉感受差、信噪比低和使用价值低(难以分辨图像内容)等问题,本文提出一种基于条件生成对抗网络的低照度图像增强方法。方法 本文设计一个具备编解码功能的卷积神经网络(CNN)模型作为生成模型,同时加入具备二分类功能的CNN作为判别模型,组成生成对抗网络。在模型训练的过程中,以真实的亮图像为条件,依靠判别模型监督生成模型以及结合判别模型与生成模型间的相互博弈,使得本文网络模型具备更好的低照度图像增强能力。在本文方法使用过程中,无需人工调节参数,图像输入模型后端到端处理并输出结果。结果 将本文方法与现有方法进行比较,利用本文方法增强的图像在亮度、清晰度以及颜色还原度等方面有了较大的提升。在峰值信噪比、直方图相似度和结构相似性等图像质量评价指标方面,本文方法比其他方法的最优值分别提高了0.7 dB、3.9%和8.2%。在处理时间上,本文方法处理图像的速度远远超过现有的传统方法,可达到实时增强的要求。结论 通过实验比较了本文方法与现有方法对于低照度图像的处理效果,表明本文方法具有更优的处理效果,同时具有更快的处理速度。 相似文献
15.
目的 生成式对抗网络(generative adversarial network,GAN)是一种无监督生成模型,通过生成模型和判别模型的博弈学习生成图像。GAN的生成模型是逐级直接生成图像,下级网络无法得知上级网络学习的特征,以至于生成的图像多样性不够丰富。另外,随着网络层数的增加,参数变多,反向传播变得困难,出现训练不稳定和梯度消失等问题。针对上述问题,基于残差网络(residual network,ResNet)和组标准化(group normalization,GN),提出了一种残差生成式对抗网络(residual generative adversarial networks,Re-GAN)。方法 Re-GAN在生成模型中构建深度残差网络模块,通过跳连接的方式融合上级网络学习的特征,增强生成图像的多样性和质量,改善反向传播过程,增强生成式对抗网络的训练稳定性,缓解梯度消失。随后采用组标准化(GN)来适应不同批次的学习,使训练过程更加稳定。结果 在Cifar10、CelebA和LSUN数据集上对算法的性能进行测试。Re-GAN的IS (inception score)均值在批次为64时,比DCGAN (deep convolutional GAN)和WGAN (Wasserstein-GAN)分别提高了5%和30%,在批次为4时,比DCGAN和WGAN分别提高了0.2%和13%,表明无论批次大小,Re-GAN生成图像具有很好的多样性。Re-GAN的FID (Fréchet inception distance)在批次为64时比DCGAN和WGAN分别降低了18%和11%,在批次为4时比DCGAN和WGAN分别降低了4%和10%,表明Re-GAN生成图像的质量更好。同时,Re-GAN缓解了训练过程中出现的训练不稳定和梯度消失等问题。结论 实验结果表明,在图像生成方面,Re-GAN的生成图像质量高、多样性强;在网络训练方面,Re-GAN在不同批次下的训练具有更好的兼容性,使训练过程更加稳定,梯度消失得到缓解。 相似文献
16.
针对行人重识别研究中训练样本的不足,为提高识别精度及泛化能力,提出一种基于卷积神经网络的改进行人重识别方法。首先对训练数据集进行扩充,使用生成对抗网络无监督学习方法生成无标签图像;然后与原数据集联合作半监督卷积神经网络训练,通过构建一个Siamese网络,结合分类模型和验证模型的特点进行训练;最后加入无标签图像类别分布方法,计算交叉熵损失来进行相似度量。实验结果表明,在Market-1501、CUHK03和DukeMTMC-reID数据集上,该方法相比原有的Siamese方法在Rank-1和mAP等性能指标上有近3~5个百分点的提升。当样本较少时,该方法具有一定应用价值。 相似文献
17.
深度生成模型的飞速发展推动了人脸深度伪造技术的进步,以Deepfake为代表的深度伪造模型也得到了十分广泛的应用。深度伪造技术可以对人脸图像或视频进行有目的的操纵,一方面,这种技术广泛应用于电影特效、娱乐场景中,丰富了人们的娱乐生活,促进了互联网多媒体的传播;另一方面,深度伪造也应用于一些可能造成不良影响的场景,给公民的名誉权、肖像权造成了危害,同时也给国家安全和社会稳定带来了极大的威胁,因此对深度伪造防御技术的研究日益迫切。现有的防御技术主要分为被动检测和主动防御,而被动检测的方式无法消除伪造人脸在广泛传播中造成的影响,难以做到“事前防御”,因此主动防御的思想得到了研究人员的广泛关注。然而,目前学术界有关深度伪造防御的综述主要关注基于检测的被动式防御方法,几乎没有以深度伪造主动防御技术为重点的综述。基于此,本文对当前学术界提出的人脸深度伪造主动防御技术进行梳理、总结和讨论。首先阐述了深度伪造主动防御的提出背景和主要思想,并对现有的人脸深度伪造主动防御算法进行汇总和归类,然后对各类主动防御算法的技术原理、性能、优缺点等进行了系统性的总结,同时介绍了研究常用的数据集和评估方法,最后对深度... 相似文献