首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article examines multi-objective problems where a solution (product) is related to a cluster of performance vectors within a multi-objective space. Here the origin of such a cluster is not uncertainty, as is typical, but rather the range of performances attainable by the product. It is shown that, in such cases, comparison of a solution to other solutions should be based on its best performance vectors, which are extracted from the cluster. The result of solving the introduced problem is a set of Pareto optimal solutions and their representation in the objective space, which is referred to here as the Pareto layer. The authors claim that the introduced Pareto layer is a previously unattended novel representation. In order to search for these optimal solutions, an evolutionary multi-objective algorithm is suggested. The article also treats the selection of a solution from the obtained optimal set.  相似文献   

2.
For multiple-objective optimization problems, a common solution methodology is to determine a Pareto optimal set. Unfortunately, these sets are often large and can become difficult to comprehend and consider. Two methods are presented as practical approaches to reduce the size of the Pareto optimal set for multiple-objective system reliability design problems. The first method is a pseudo-ranking scheme that helps the decision maker select solutions that reflect his/her objective function priorities. In the second approach, we used data mining clustering techniques to group the data by using the k-means algorithm to find clusters of similar solutions. This provides the decision maker with just k general solutions to choose from. With this second method, from the clustered Pareto optimal set, we attempted to find solutions which are likely to be more relevant to the decision maker. These are solutions where a small improvement in one objective would lead to a large deterioration in at least one other objective. To demonstrate how these methods work, the well-known redundancy allocation problem was solved as a multiple objective problem by using the NSGA genetic algorithm to initially find the Pareto optimal solutions, and then, the two proposed methods are applied to prune the Pareto set.  相似文献   

3.
Methods for generating Pareto optimal solutions to a multicriterion optimization problem are considered. The norm methods based on the scalarization of the original multicriterion problem by using the l-norm are discussed in a unified form and a parametrization suitable for different interactive design systems is suggested. In addition, an alternative approach which, instead of scalarization, reduces the dimension of the multicriterion problem is proposed. This is called the partial weighting method and it can beinterpreted as a generalization of the traditional scalarization technique where the weighted sum of the criteria is used as the objective function. The first of these two approaches (norm method) is very flexible from a designer's point of view and it can be applied also in non-convex cases to the determination of the Pareto optimal set whereas the latter (partial weighting method) is especially suitable for problems where the number of criteria is large. Throughout the article several illustrative truss examples are presented to augment the scanty collection of multicriterion problems treated in the literature of optimum structural design.  相似文献   

4.
A multi-objective memetic algorithm based on decomposition is proposed in this article, in which a simplified quadratic approximation (SQA) is employed as a local search operator for enhancing the performance of a multi-objective evolutionary algorithm based on decomposition (MOEA/D). The SQA is used for a fast local search and the MOEA/D is used as the global optimizer. The multi-objective memetic algorithm based on decomposition, i.e. a hybrid of the MOEA/D with the SQA (MOEA/D-SQA), is designed to balance local versus global search strategies so as to obtain a set of diverse non-dominated solutions as quickly as possible. The emphasis of this article is placed on demonstrating how this local search scheme can improve the performance of MOEA/D for multi-objective optimization. MOEA/D-SQA has been tested on a wide set of benchmark problems with complicated Pareto set shapes. Experimental results indicate that the proposed approach performs better than MOEA/D. In addition, the results obtained are very competitive when comparing MOEA/D-SQA with other state-of-the-art techniques.  相似文献   

5.
Taboo search is a heuristic optimization technique which works with a neighbourhood of solutions to optimize a given objective function. It is generally applied to single objective optimization problems. Taboo search has the potential for solving multiple objective optimization (MOO) problems, because it works with more than one solution at a time, and this gives it the opportunity to evaluate multiple objective functions simultaneously. In this paper, a taboo search based algorithm is developed to find Pareto optimal solutions in multiple objective optimization problems. The developed algorithm has been tested with a number of problems and compared with other techniques. Results obtained from this work have proved that a taboo search based algorithm can find Pareto optimal solutions in MOO effectively.  相似文献   

6.
This article proposes the hybrid Nelder–Mead (NM)–Particle Swarm Optimization (PSO) algorithm based on the NM simplex search method and PSO for the optimization of multimodal functions. The hybrid NM–PSO algorithm is very easy to implement, in practice, since it does not require gradient computation. This hybrid procedure performed the exploration with PSO and the exploitation with the NM simplex search method. In a suite of 17 multi-optima test functions taken from the literature, the computational results via various experimental studies showed that the hybrid NM–PSO approach is superior to the two original search techniques (i.e. NM and PSO) in terms of solution quality and convergence rate. In addition, the presented algorithm is also compared with eight other published methods, such as hybrid genetic algorithm (GA), continuous GA, simulated annealing (SA), and tabu search (TS) by means of a smaller set of test functions. On the whole, the new algorithm is demonstrated to be extremely effective and efficient at locating best-practice optimal solutions for multimodal functions.  相似文献   

7.
This article proposes an improved imperialistic competitive algorithm to solve multi-objective optimization problems. The proposed multi-objective imperialistic competitive algorithm (MOICA) uses the elitist strategy, based on the mutation and crossover as in genetic algorithms, and the Pareto concept to store simultaneously optimal solutions of multiple conflicting functions. Three performance metrics are used to evaluate the performance of the new algorithm: convergence to the true Pareto-optimal set, solution diversity and robustness, characterized by the variance over 10 runs. To validate the efficiency of the proposed algorithm, several multi-objective standard test functions with true solutions are used. The obtained results show that the MOICA outperforms most of the methods available in the literature. The proposed algorithm can also handle multi-objective engineering design problems with high dimensions.  相似文献   

8.
This paper presents a hybrid Pareto-based local search (PLS) algorithm for solving the multi-objective flexible job shop scheduling problem. Three minimisation objectives are considered simultaneously, i.e. the maximum completion time (makespan), the total workload of all machines, and the workload of the critical machine. In this study, several well-designed neighbouring approaches are proposed, which consider the problem characteristics and thus can hold fast convergence ability while keep the population with a certain level of quality and diversity. Moreover, a variable neighbourhood search (VNS) based self-adaptive strategy is embedded in the hybrid algorithm to utilise the neighbouring approaches efficiently. Then, an external Pareto archive is developed to record the non-dominated solutions found so far. In addition, a speed-up method is devised to update the Pareto archive set. Experimental results on several well-known benchmarks show the efficiency of the proposed hybrid algorithm. It is concluded that the PLS algorithm is superior to the very recent algorithms, in term of both search quality and computational efficiency.  相似文献   

9.
10.
Multi-objective scheduling problems: Determination of pruned Pareto sets   总被引:1,自引:0,他引:1  
There are often multiple competing objectives for industrial scheduling and production planning problems. Two practical methods are presented to efficiently identify promising solutions from among a Pareto optimal set for multi-objective scheduling problems. Generally, multi-objective optimization problems can be solved by combining the objectives into a single objective using equivalent cost conversions, utility theory, etc., or by determination of a Pareto optimal set. Pareto optimal sets or representative subsets can be found by using a multi-objective genetic algorithm or by other means. Then, in practice, the decision maker ultimately has to select one solution from this set for system implementation. However, the Pareto optimal set is often large and cumbersome, making the post-Pareto analysis phase potentially difficult, especially as the number of objectives increase. Our research involves the post Pareto analysis phase, and two methods are presented to filter the Pareto optimal set to determine a subset of promising or desirable solutions. The first method is pruning using non-numerical objective function ranking preferences. The second approach involves pruning by using data clustering. The k-means algorithm is used to find clusters of similar solutions in the Pareto optimal set. The clustered data allows the decision maker to have just k general solutions from which to choose. These methods are general, and they are demonstrated using two multi-objective problems involving the scheduling of the bottleneck operation of a printed wiring board manufacturing line and a more general scheduling problem.  相似文献   

11.
Long Tang  Hu Wang 《工程优选》2016,48(10):1759-1777
Categorical multi-objective optimization is an important issue involved in many matching design problems. Non-numerical variables and their uncertainty are the major challenges of such optimizations. Therefore, this article proposes a dual-mode nested search (DMNS) method. In the outer layer, kriging metamodels are established using standard regular simplex mapping (SRSM) from categorical candidates to numerical values. Assisted by the metamodels, a k-cluster-based intelligent sampling strategy is developed to search Pareto frontier points. The inner layer uses an interval number method to model the uncertainty of categorical candidates. To improve the efficiency, a multi-feature convergent optimization via most-promising-area stochastic search (MFCOMPASS) is proposed to determine the bounds of objectives. Finally, typical numerical examples are employed to demonstrate the effectiveness of the proposed DMNS method.  相似文献   

12.
Finding an optimum design that satisfies all performances in a design problem is very challenging. To overcome this problem, multiobjective optimization methods have been researched to obtain Pareto optimum solutions. Among the different methods, the weighted sum method is widely used for its convenience. However, since the different weights do not always guarantee evenly distributed solutions on the Pareto front, the weights need to be determined systematically. Therefore, this paper presents a multiobjective optimization using a new adaptive weight determination scheme. Solutions on the Pareto front are gradually found with different weights, and the values of these weights are adaptively determined by using information from the previously obtained solutions' positions. For an n-objective problem, a hyperplane is constructed in n -dimensional space, and new weights are calculated to find the next solutions. To confirm the effectiveness of the proposed method, benchmarking problems that have different types of Pareto front are tested, and a topology optimization problem is performed as an engineering problem. A hypervolume indicator is used to quantitatively evaluate the proposed method, and it is confirmed that optimized solutions that are evenly distributed on the Pareto front can be obtained by using the proposed method.  相似文献   

13.
N-version programming (NVP) is a programming approach for constructing fault tolerant software systems. Generally, an optimization model utilized in NVP selects the optimal set of versions for each module to maximize the system reliability and to constrain the total cost to remain within a given budget. In such a model, while the number of versions included in the obtained solution is generally reduced, the budget restriction may be so rigid that it may fail to find the optimal solution. In order to ameliorate this problem, this paper proposes a novel bi-objective optimization model that maximizes the system reliability and minimizes the system total cost for designing N-version software systems. When solving multi-objective optimization problem, it is crucial to find Pareto solutions. It is, however, not easy to obtain them. In this paper, we propose a novel bi-objective optimization model that obtains many Pareto solutions efficiently.We formulate the optimal design problem of NVP as a bi-objective 0–1 nonlinear integer programming problem. In order to overcome this problem, we propose a Multi-objective genetic algorithm (MOGA), which is a powerful, though time-consuming, method to solve multi-objective optimization problems. When implementing genetic algorithm (GA), the use of an appropriate genetic representation scheme is one of the most important issues to obtain good performance. We employ random-key representation in our MOGA to find many Pareto solutions spaced as evenly as possible along the Pareto frontier. To pursue improve further performance, we introduce elitism, the Pareto-insertion and the Pareto-deletion operations based on distance between Pareto solutions in the selection process.The proposed MOGA obtains many Pareto solutions along the Pareto frontier evenly. The user of the MOGA can select the best compromise solution among the candidates by controlling the balance between the system reliability and the total cost.  相似文献   

14.
When solving multiobjective optimization problems, there is typically a decision maker (DM) who is responsible for determining the most preferred Pareto optimal solution based on his preferences. To gain confidence that the decisions to be made are the right ones for the DM, it is important to understand the trade-offs related to different Pareto optimal solutions. We first propose a trade-off analysis approach that can be connected to various multiobjective optimization methods utilizing a certain type of scalarization to produce Pareto optimal solutions. With this approach, the DM can conveniently learn about local trade-offs between the conflicting objectives and judge whether they are acceptable. The approach is based on an idea where the DM is able to make small changes in the components of a selected Pareto optimal objective vector. The resulting vector is treated as a reference point which is then projected to the tangent hyperplane of the Pareto optimal set located at the Pareto optimal solution selected. The obtained approximate Pareto optimal solutions can be used to study trade-off information. The approach is especially useful when trade-off analysis must be carried out without increasing computation workload. We demonstrate the usage of the approach through an academic example problem.  相似文献   

15.
Tao Zhang  Yajie Liu  Bo Guo 《工程优选》2016,48(3):415-436
The concept of co-evolution of preferences and candidate solutions has proven effective for many-objective optimization. One realization of this concept, namely preference-inspired co-evolutionary algorithms using goal vectors (PICEA-g), is found to outperform many state-of-the-art multi-objective evolutionary algorithms for many-objective problems. However, PICEA-g is susceptible to unevenness in the solution distribution. This study seeks to tackle this issue and to improve the performance of PICEA-g further. Two established strategies are incorporated into PICEA-g: (i) an adaptive ε-dominance archiving strategy which is applied to obtain a set of well spread solutions online; and (ii) the orthogonal design method which is used to initialize candidate solutions. The improved algorithm, denoted as aε-ODPICEA-g, shows a better performance than PICEA-g on both 2- and 7-objective benchmark problems as well as a real-world problem.  相似文献   

16.
Chun Chen 《工程优选》2014,46(10):1430-1445
Multi-objective optimization is widely used in science, engineering and business. In this article, an improved version of the multiple trajectory search (MTS) called MTS2 is presented and successfully applied to real-value multi-objective optimization problems. In the first step, MTS2 generates M initial solutions distributed over the solution space. These solutions are called seeds. Some seeds with good objective values are selected as foreground seeds. Then, MTS2 chooses a suitable region search method for each foreground seed according to the landscape of the neighbourhood of the seed. During the search, MTS2 focuses its search on some promising areas specified by the foreground seeds. The performance of MTS2 was examined by applying it to solve the benchmark problems provided by the Competition of Performance Assessment of Constrained/Bound Constrained Multi-Objective Optimization Algorithms held at the 2009 IEEE Congress on Evolutionary Computation.  相似文献   

17.
The generalised assignment problem (GAP) is the problem of finding a minimum cost assignment of a set of jobs to a set of agents. Each job is assigned to exactly one agent. The total demands of all jobs assigned to any agent can not exceed the total resources available to that agent. A review of exact and heuristic methods is presented. A-generation mechanism is introduced. Different search strategies and parameter settings are investigated for the-generation descent, hybrid simulated annealing/tabu search and tabu search heuristic methods. The developed methods incorporate a number of features that have proven useful for obtaining optimal and near optimal solutions. The effectiveness of our approaches is established by comparing their performance in terms of solution quality and computional requirement to other specialized branch-and-bound tree search, simulated annealing and set partitioning heuristics on a set of standard problems from the literature.  相似文献   

18.
Most real-world optimization problems involve the optimization task of more than a single objective function and, therefore, require a great amount of computational effort as the solution procedure is designed to anchor multiple compromised optimal solutions. Abundant multi-objective evolutionary algorithms (MOEAs) for multi-objective optimization have appeared in the literature over the past two decades. In this article, a new proposal by means of particle swarm optimization is addressed for solving multi-objective optimization problems. The proposed algorithm is constructed based on the concept of Pareto dominance, taking both the diversified search and empirical movement strategies into account. The proposed particle swarm MOEA with these two strategies is thus dubbed the empirical-movement diversified-search multi-objective particle swarm optimizer (EMDS-MOPSO). Its performance is assessed in terms of a suite of standard benchmark functions taken from the literature and compared to other four state-of-the-art MOEAs. The computational results demonstrate that the proposed algorithm shows great promise in solving multi-objective optimization problems.  相似文献   

19.
带调整时间的多目标流水车间调度的优化算法   总被引:2,自引:1,他引:1  
为高效地求解带调整时间的多目标流水车间调度问题,提出了一种多目标混合遗传算法,此算法依据基于Pareto优于关系的个体排序数和密度值计算适应度,保持解的多样性,并采用非劣解并行局部搜索策略,提高算法的搜索效率.此外,引入精英策略保证算法的收敛性,在进化过程中通过淘汰掉个别最差个体,进一步加快解的收敛速度.仿真结果表明,新算法能够有效地解决带调整时间的多目标流水车间调度问题.  相似文献   

20.
In many applications, several conflicting objectives have to be optimized concurrently leading to a multi-objective optimization problem. Since the set of solutions, the so-called Pareto set, typically forms a (k?1)-dimensional manifold, where k is the number of objectives considered in the model, continuation methods such as predictor–corrector (PC) methods are in certain cases very efficient tools for rapidly computing a finite size representation of the set of interest. However, their classical implementation leads to trouble when considering higher-dimensional models (i.e. for dimension n>1000 of the parameter space). In this work, it is proposed to perform a successive approximation of the tangent space which allows one to find promising predictor points with less effort in particular for high-dimensional models since no Hessians of the objectives have to be calculated. The applicability of the resulting PC variant is demonstrated on a benchmark model for up to n=100, 000 parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号