首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Newmark method for the numerical integration of second order equations has been extensively used and studied along the past fifty years for structural dynamics and various fields of mechanical engineering. Easy implementation and nice properties of this method and its derivatives for linear problems are appreciated but the main drawback is the treatment of discontinuities. Zienkiewicz proposed an approach using finite element concept in time, which allows a new look at the Newmark method. The idea of this paper is to propose, thanks to this approach, the use of a time partition of the unity method denoted Time Extended Finite Element Method (TX‐FEM) for improved numerical simulations of time discontinuities. An enriched basis of shape functions in time is used to capture with a good accuracy the non‐polynomial part of the solution. This formulation allows a suitable form of the time‐stepping formulae to study stability and energy conservation. The case of an enrichment with the Heaviside function is developed and can be seen as an alternative approach to time discontinuous Galerkin method (T‐DGM), stability and accuracy properties of which can be derived from those of the TX‐FEM. Then Space and Time X‐FEM (STX‐FEM) are combined to obtain a unified space–time discretization. This combined STX‐FEM appears to be a suitable technique for space–time discontinuous problems like dynamic crack propagation or other applications involving moving discontinuities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Pankaj Kumar  S. Narayanan 《Sadhana》2006,31(4):445-461
The response of a structural system to white noise excitation (deltacorrelated) constitutes a Markov vector process whose transitional probability density function (TPDF) is governed by both the forward Fokker-Planck and backward Kolmogorov equations. Numerical solution of these equations by finite element and finite difference methods for dynamical systems of engineering interest has been hindered by the problem of dimensionality. In this paper numerical solution of the stationary and transient form of the Fokker-Planck (FP) equation corresponding to two state nonlinear systems is obtained by standard sequential finite element method (FEM) using C0 shape function and Crank-Nicholson time integration scheme. The method is applied to Van-der-Pol and Duffing oscillators providing good agreement between results obtained by it and exact results. An extension of the finite difference discretization scheme developed by Spencer, Bergman and Wojtkiewicz is also presented. This paper presents an extension of the finite difference method for the solution of FP equation up to four dimensions. The difficulties associated in extending these methods to higher dimensional systems are discussed. This paper is dedicated to Prof R N Iyengar of the Indian Institute of Science on the occasion of his formal retirement.  相似文献   

3.
A new residual‐based finite element method for the scalar Helmholtz equation is developed. This method is obtained from the Galerkin approximation by appending terms that are proportional to residuals on element interiors and inter‐element boundaries. The inclusion of residuals on inter‐element boundaries distinguishes this method from the well‐known Galerkin least‐squares method and is crucial to the resulting accuracy of this method. In two dimensions and for regular bilinear quadrilateral finite elements, it is shown via a dispersion analysis that this method has minimal phase error. Numerical experiments are conducted to verify this claim as well as test and compare the performance of this method on unstructured meshes with other methods. It is found that even for unstructured meshes this method retains a high level of accuracy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
在金属淬火过程的数值模拟中,换热系数的正确求解是工件温度场、应力/应变场模拟结果与实际相符合的先决条件.据此研究和分析了换热系数反求法的数学模型,分别采用一维和三维有限元法对该数学模型求解.研究表明:与采用一维有限差分的求解法相比较,计算过程由一维有限元法增加到三维有限元法,与实际情况更为接近;用有限元方法求解的换热系数曲线连续且平滑,结果可靠,且编程量小;用求得的换热系数计算金属淬火试件的中心温度场变化曲线,计算结果与实测数据相吻合.  相似文献   

5.
A new adaptive finite element method is proposed for the advection–dispersion equation using an Eulerian–Lagrangian formulation. The method is based on a decomposition of the concentration field into two parts, one advective and one dispersive, in a rigorous manner that does not leave room for ambiguity. The advective component of steep concentration fronts is tracked forward with the aid of moving particles clustered around each front. Away from such fronts the advection problem is handled by an efficient modified method of characteristics called single-step reverse particle tracking. When a front dissipates with time, its forward tracking stops automatically and the corresponding cloud of particles is eliminated. The dispersion problem is solved by an unconventional Lagrangian finite element formulation on a fixed grid which involves only symmetric and diagonal matrices. Preliminary tests against analytical solutions of one- and two-dimensional dispersion in a uniform steady-state velocity field suggest that the proposed adaptive method can handle the entire range of Péclet numbers from 0 to ∞, with Courant numbers well in excess of 1.  相似文献   

6.
Recently, the application of graphics processing units (GPUs) to scientific computations is attracting a great deal of attention, because GPUs are getting faster and more programmable. In particular, NVIDIA's GPUs called compute unified device architecture enable highly mutlithreaded parallel computing for non‐graphic applications. This paper proposes a novel way to accelerate the boundary element method (BEM) for three‐dimensional Helmholtz' equation using CUDA. Adopting the techniques for the data caching and the double–single precision floating‐point arithmetic, we implemented a GPU‐accelerated BEM program for GeForce 8‐series GPUs. The program performed 6–23 times faster than a normal BEM program, which was optimized for an Intel's quad‐core CPU, for a series of boundary value problems with 8000–128000 unknowns, and it sustained a performance of 167 Gflop/s for the largest problem (1 058 000 unknowns). The accuracy of our BEM program was almost the same as that of the regular BEM program using the double precision floating‐point arithmetic. In addition, our BEM was applicable to solve realistic problems. In conclusion, the present GPU‐accelerated BEM works rapidly and precisely for solving large‐scale boundary value problems for Helmholtz' equation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The level set equation is a non‐linear advection equation, and standard finite‐element and finite‐difference strategies typically employ spatial stabilization techniques to suppress spurious oscillations in the numerical solution. We recast the level set equation in a simpler form by assuming that the level set function remains a signed distance to the front/interface being captured. As with the original level set equation, the use of an extensional velocity helps maintain this signed‐distance function. For some interface‐evolution problems, this approach reduces the original level set equation to an ordinary differential equation that is almost trivial to solve. Further, we find that sufficient accuracy is available through a standard Galerkin formulation without any stabilization or discontinuity‐capturing terms. Several numerical experiments are conducted to assess the ability of the proposed assumed‐gradient level set method to capture the correct solution, particularly in the presence of discontinuities in the extensional velocity or level‐set gradient. We examine the convergence properties of the method and its performance in problems where the simplified level set equation takes the form of a Hamilton–Jacobi equation with convex/non‐convex Hamiltonian. Importantly, discretizations based on structured and unstructured finite‐element meshes of bilinear quadrilateral and linear triangular elements are shown to perform equally well. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a new arbitrary Lagrangian–Eulerian (ALE) finite element formulation for finite strain plasticity in non‐linear solid mechanics. We consider the models of finite strain plasticity defined by the multiplicative decomposition of the deformation gradient in an elastic and a plastic part ( F = F e F p), with the stresses given by a hyperelastic relation. In contrast with more classical ALE approaches based on plastic models of the hypoelastic type, the ALE formulation presented herein considers the direct interpolation of the motion of the material with respect to the reference mesh together with the motion of the spatial mesh with respect to this same reference mesh. This aspect is shown to be crucial for a simple treatment of the advection of the plastic internal variables and dynamic variables. In fact, this advection is carried out exactly through a particle tracking in the reference mesh, a calculation that can be accomplished very efficiently with the use of the connectivity graph of the fixed reference mesh. A staggered scheme defined by three steps (the smoothing, the advection and the Lagrangian steps) leads to an efficient method for the solution of the resulting equations. We present several representative numerical simulations that illustrate the performance of the newly proposed methods. Both quasi‐static and dynamic conditions are considered in these model examples. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The paper introduces a weighted residual‐based approach for the numerical investigation of the interaction of fluid flow and thin flexible structures. The presented method enables one to treat strongly coupled systems involving large structural motion and deformation of multiple‐flow‐immersed solid objects. The fluid flow is described by the incompressible Navier–Stokes equations. The current configuration of the thin structure of linear elastic material with non‐linear kinematics is mapped to the flow using the zero iso‐contour of an updated level set function. The formulation of fluid, structure and coupling conditions uniformly uses velocities as unknowns. The integration of the weak form is performed on a space–time finite element discretization of the domain. Interfacial constraints of the multi‐field problem are ensured by distributed Lagrange multipliers. The proposed formulation and discretization techniques lead to a monolithic algebraic system, well suited for strongly coupled fluid–structure systems. Embedding a thin structure into a flow results in non‐smooth fields for the fluid. Based on the concept of the extended finite element method, the space–time approximations of fluid pressure and velocity are properly enriched to capture weakly and strongly discontinuous solutions. This leads to the present enriched space–time (EST) method. Numerical examples of fluid–structure interaction show the eligibility of the developed numerical approach in order to describe the behavior of such coupled systems. The test cases demonstrate the application of the proposed technique to problems where mesh moving strategies often fail. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
A method of estimating the probability density function and cumulative distribution function when only the ordinary or central moments of the distribution are known is examined. The technique is used in conjunction with previous work which yields the ordinary moments of time to first passage failure to obtain accurate estimates of the failure probability for two representative oscillators. The results are then compared to those obtained by a nearly exact numerical scheme.  相似文献   

11.
12.
This paper investigates the performance of a class of methods based on the Preconditioned Conjugate Gradient (PCG) method for the solution of large and sparse systems of linear equations which arise from the p-version of the adaptive finite element method. The hierarchical type of preconditioning used in the past is extended to the SSOR and incomplete factorization type preconditioning and applied with a global handling of the stiffness matrix. The paper also presents some new ideas on Domain Decomposition (DD) matrix-handling techniques, whereby the explicit formulation of the resulting Schur complement is avoided by utilizing the PCG method with efficient preconditioners and by processing separately on the coarse and the fine mesh. The suitability of the methods to the p-version of the adaptive finite element method is demonstrated through extensive numerical tests in two dimensions.  相似文献   

13.
In this paper a Galerkin least-squares (GLS) finite element method, in which residuals in least-squares form are added to the standard Galerkin variational equation, is developed to solve the Helmholtz equation in two dimensions. An important feature of GLS methods is the introduction of a local mesh parameter that may be designed to provide accurate solutions with relatively coarse meshes. Previous work has accomplished this for the one-dimensional Helmholtz equation using dispersion analysis. In this paper, the selection of the GLS mesh parameter for two dimensions is considered, and leads to elements that exhibit improved phase accuracy. For any given direction of wave propagation, an optimal GLS mesh parameter is determined using two-dimensional Fourier analysis. In general problems, the direction of wave propagation will not be known a priori. In this case, an optimal GLS parameter is found which reduces phase error for all possible wave vector orientations over elements. The optimal GLS parameters are derived for both consistent and lumped mass approximations. Several numerical examples are given and the results compared with those obtained from the Galerkin method. The extension of GLS to higher-order quadratic interpolations is also presented.  相似文献   

14.
A number of coupled particle–element and hybrid particle–element methods have been developed for the simulation of hypervelocity impact problems to avoid certain disadvantages associated with the use of pure continuum‐based or pure particle‐based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particle entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
A two-level finite element method is introduced and its application to the Helmholtz equation is considered. The method retains the desirable features of the Galerkin method enriched with residual-free bubbles, while it is not limited to discretizations using elements with simple geometry. The method can be applied to other equations and to irregular-shaped domains. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
Considerable attention has been devoted in the literature on numerical methods towards securing energy convergence of solutions for, say, linearly elastic plate bending problems. Although energy convergence is necessary it by no means follows that the derived bending moments and shearing forces converge uniformly at a given point and it is this kind of feature which the engineer is really seeking. This question is examined in the context of a problem which is of particular interest to the civil engineering field and concerns the bending of a square plate under uniformly distributed load; the plate has simply supported edges and contains a central square hole with free edges. The solution to this multiply connected and mixed boundary value problem is obtained through a recently developed modification to the Rayleigh–Ritz method which has very general application and renders the solution mathematically valid up to the internal corner points where the bending moments are singular. Use is made of triangular equilibrium finite elements in conjunction with continuous eigenfunctions. Although it is already known that the order (i.e. the eigenvalue) of the singularity at the internal corners is available by inspection, it is an interesting feature of the present solution that a good approximation to the amplitude is also obtained by an inspection of the finite element results.  相似文献   

17.
We present a generalized Lagrangian formulation for analysis of industrial forming processes involving thermally coupled interactions between deformable continua. The governing equations for the deformable bodies are written in a unified manner that holds both for fluids and solids. The success of the formulation lays on a residual-based expression of the mass conservation equation obtained using the finite calculus method that provides the necessary stability for quasi/fully incompressible situations. The governing equations are discretized with the FEM via a mixed formulation using simplicial elements with equal linear interpolation for the velocities, the pressure and the temperature. The merits of the formulation are demonstrated in the solution of 2D and 3D thermally-coupled forming processes using the particle finite element method.  相似文献   

18.
In the past, the combined finite–discrete element was mostly based on linear tetrahedral finite elements. Locking problems associated with this element can seriously degrade the accuracy of their simulations. In this work an efficient ten‐noded quadratic element is developed in a format suitable for the combined finite–discrete element method (FEMDEM). The so‐called F‐bar approach is used to relax volumetric locking and an explicit finite element analysis is employed. A thorough validation of the numerical method is presented including five static and four dynamic examples with different loading, boundary conditions, and materials. The advantages of the new higher‐order tetrahedral element are illustrated when brought together with contact detection and contact interaction capability within a new fully 3D FEMDEM formulation. An application comparing stresses generated within two drop experiments involving different unit specimens called Vcross and VRcross is shown. The Vcross and VRcross units of ~3.5 × 104kg show very different stress generation implying different survivability upon collision with a deformable floor. The test case shows the FEMDEM method has the capability to tackle the dynamics of complex‐shaped geometries and massive multi‐body granular systems typical of concrete armour and rock armour layers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Abel's integral equation is the governing equation for certain problems in physics and engineering, such as radiation from distributed sources. The finite element method for the soultion of this non-linear equation is presented for problems with cylindrical symmetry and the extension to more general integral equations is indicated. The technique was applied to an axisymmetric glow discharge problem and the results show excellent agreement with previously obtained solutions.  相似文献   

20.
A functional has been developed for the finite element solution of diffusion—convection problems. This functional is suitable for the application of the variational principle on discretization schemes in the space—time domain. This algorithm has shown to be computationally efficient over the conventional finite element discretization in the space domain alone. Numerical examples on one-dimensional energy transport have been included to illustrate the merit of this technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号