首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不锈钢海水潮汐区16年腐蚀行为   总被引:3,自引:0,他引:3  
在青岛、厦门和榆林3个试验站的潮汐区对5种不锈钢暴露16年,总结其腐蚀行为和规律。在潮汐区暴露的不锈钢受点蚀和缝隙腐蚀破坏。不锈钢在潮汐区暴露1至4年的点蚀速度较大,以后点蚀速度减慢。耐点蚀性能较好的不锈钢,耐缝隙腐蚀性能也较好。不锈钢在潮汐区的腐蚀随暴露地点的海水温度升高而加重。增加Cr含量、添加Mo能明显提高不锈钢在潮汐区的耐蚀性。Ni对提高的耐蚀性有效,但影响效果较小。海生物污损能引起不锈钢的局部腐蚀,它对不锈钢在潮汐区的腐蚀有显著影响。  相似文献   

2.
A large number of production and laboratory heats in grades AISI 304 and 316 with normal and extremely low managanese and sulphur contents and a number of production heats in more highly alloyed austenitic stainless steels have been studied with regard to their resistance to initiation of pitting and crevice corrosion at various temperatures. The criteria for resistance to initiation was the potentiodynamic pitting potential in 0.1 M NaCl and synthetic seawater and the time to attack initiation for crevice corrosion in 0.5 and 5% NaCl solutions. A large number of production and laboratory heats in grades AISI 304 and 316 with normal and extremely low managanese and sulphur contents and a number of production heats in more highly alloyed austenitic stainless steels have been studied with regard to their resistance to initiation of pitting and crevice corrosion at various temperatures. The critieria for resistance to initiation was the potentiodynamic pitting potential in 0.1 M NaCl and synthetic seawater and the time to attack initiation for crevice corrosion in 0.5 and 5% NaCl solutions. The main aims of the study were to examine both the effect of manganese relative to that of chromium, molybdenum and sulphur and the effect of heat treatment and sulphide composition on steels with low manganese contents. Mathematical models for calculation of the pitting potentials have been constructed and multiple linear regression analysis gave the equations and their reliabilities. Lowering of the Mn content in austenitic stainless steels to 0.2% gives rise to a material of interest for constructions where pitting or crevice corrosion are judged to be the only potential types of attack, where operational disturbances leading to greatly increased corrosivity do not occur, where attack can not be tolerated, and where steel with normal managanese content has not exhibited fully satisfactory corrosion resistance. If the above conditions are fulfilled the low manganese content can be said to correspond to the same positive effect as is obtained by an addition of the least 1.5% Mo.  相似文献   

3.
6种不锈钢的化学和电化学腐蚀行为   总被引:2,自引:0,他引:2  
罗永赞 《腐蚀与防护》1999,20(7):310-313
采用化学和电化学加速腐蚀试验方法对6种不锈钢的耐点蚀和缝隙腐蚀性能进行了评价。结果表明:两种评价方法之间具有良好的相关性;6种不锈钢按照点蚀和缝隙腐蚀抗力由大到小的顺序排列为3^#〉1^#〉6^#〉2^#〉4^#〉5^#,详细描述了6种不锈钢各自的腐蚀行为特征。  相似文献   

4.
Pitting and crevice corrosion of stainless steels in chloride solutions In practice stainless steels in chloride containing waters are found to be susceptible to crevice corrosion and pitting. Corrosion tests were carried out on AISI 304 L stainless using a simulated crevice and the compositions of the electrolyte in the crevice determined. Long term potentiostatic tests were used to determine the critical potentials for crevice corrosion (US), for various steels in sodium chloride solutions at different concentrations and temperatures. The steels studied were 22 CrMo V 121, X 22 CrNi 17 and AISI 304 L. Like the critical pitting potential (UL), US was found to have a strong dependence on the chloride content of the external solution. At higher concentrations the two potentials were similar. At lower concentrations the US was lower than UL. The knowledge of these critical potentials together with well known rest potentials for a steel in an electrolyte of known concentration, allows conclusions to be drawn about its susceptibility to pitting and crevice corrosion. The method is suitable also for other passive metals.  相似文献   

5.
不锈钢腐蚀评价技术研究及其应用   总被引:4,自引:0,他引:4  
为了满足我国不锈钢产品设计、热处理与加工工艺的确定与优化、焊接工艺和焊缝质量评定、服役适用性评价等方面的需求,在实现不锈钢各类局部腐蚀(点蚀、缝隙腐蚀、晶间腐蚀、应力腐蚀)常规评价技术的基础上,建立了超316级别不锈钢腐蚀的系统评价技术。本文介绍的是复旦大学材料科学系近来实现的一批主要技术及其应用实例。包括:(1)临界点蚀温度(CPT)和微蚀坑控制技术两类方法;(2)双相不锈钢固溶处理温度范围中合金元素在两相间分配效果的评价;(3)奥氏体不锈钢电化学动电位再活化(EPR)评价技术在双相不锈钢晶间腐蚀评价中的拓展;(4)中低温处理中的二次相析出规律与对应点蚀、晶间腐蚀敏感性的评定;(5)交流阻抗技术在复杂组织晶间腐蚀敏感性评价中的应用;(6)缝隙腐蚀临界温度测量技术及其应用。  相似文献   

6.
Surface treatments of high alloy 6 Mo stainless steel and nickel alloy weldments High alloy stainless steels (6% Mo) and a high nickel alloy (alloy 625) weldment have been tested in order to answer the question whether post-treatment of the weldment has an effect on the corrosion resistance, especially on pitting corrosion. Therefore, the critical pitting temperature of weldments was tested in acidic chloride solution (standard tests). As a result grinding with rough emery paper as well as sand blasting lowers the localized corrosion resistance in the weldment area, while pickling has a positive effect, especially after blasting. Pickling can be done either by a solution of nitric + hydrofluoric acid or by a commercial pickling paste. In any event pickling is recommended as a final surface treatment for high alloy stainless steels and nickel alloys, especially in case of prevailing highly corrosive conditions such as pitting and crevice corrosion.  相似文献   

7.
Nucleation of crevice corrosion of five stainless steels in NaCl solution has been studied using potentiokinetic and galvanostatic methods. It is inferred that a well reproducible critical potential for crevice corrosion nucleation exists. This potential depends on the type of steel and is more negative than the critical potential for pit nucleation. The difference between the potential for crevice corrosion and that for pitting is higher for more resistant steels than for less resistant ones. A mechanism explaining the crevice corrosion in chloride solutions is proposed.  相似文献   

8.
Following the success of forming a carbon S-phase (expanded austenite) surface layer on medical grade Ni-free austenitic stainless steel by DC plasma carburising, the established commercial carburising process Kolsterising® was performed on both Ni-containing (AISI 304) and Ni-free austenitic stainless steels. While the Ni-containing stainless steel responded very well to Kolsterising®, the Ni-free alloy did not. The carbon absorption and the hardness of the Kolsterised® Ni-free alloy are inferior to Kolsterised® AISI 304 Ni-containing stainless steel, however, the hardness of the untreated Ni-free alloy was doubled by Kolsterising®. The response of both Kolsterised® Ni-free and Ni-containing alloys to pitting, crevice corrosion and intergranular corrosion resistance was similar. From this work it can be concluded that the Kolsterised® austenitic stainless steels do not suffer from intergranular corrosion but are susceptible to intragranular pitting when tested in boiling sulphuric acid and copper sulphate solution. It was also observed that Kolsterising® improves significantly the pitting and crevice corrosion resistance of the alloys used in this study.  相似文献   

9.
The pitting and crevice corrosion behaviour of stainless steels as a function of temperature and salinity (chlorides) of industrial waters has been considered in connection with environmental modification occurring because of the attack propagation. The actual meaning and the practical importance of the protection potential are examined and conclusions are drawn taking into account both the potential and non-potential dependent initiation and growth of corrosion phenomena. In this concern, the theoretical background and practical conditions for localized corrosion prevention by cathodic-anodic protection are discussed. Experimental stability diagrams of four stainless steel grades (AISI 304, 316, 430 and 410) at 22, 44 and 64°C are obtained and expressed in terms of electrode potential vs NaCl content in water.  相似文献   

10.
工业纯Al的缝隙腐蚀再钝化电位   总被引:1,自引:0,他引:1  
梁成浩 《金属学报》1994,30(16):165-168
工业纯Al的缝隙腐蚀再钝化电位ER是缝隙结构的特征值,与缝隙腐蚀下限电位VCREV一致,比孔蚀电位负约100mV,说明缝隙腐蚀更易发生.  相似文献   

11.
从孔蚀与缝隙腐蚀两方面考察氮对25-6Mo3型双相不锈钢耐蚀性能的影响。结果表明:随含氮量增加,材料的孔蚀阻力增大,缝隙腐蚀速率下降,且存在关系式:CCT(℃)=17.3+78.4N%(wt)。含氮量越高,氮在钝化膜中的富集程度越大,对于含0.28%N的钢,其最高富集系数可达14;随含氮量增高,孔蚀位置从Y相转移到α相,含0.096%N是孔蚀位置发生转移的分界点。模拟闭塞区试验表明,含氮量越高,闭塞溶液的最终pH值越大,用Nessler特性试剂检验,发现0.28%N钢的闭塞液中存在着NH,从而证实了双相钢中同样存在着氮元素的缓蚀效应。可见氮元素的作用是通过膜内富集,改善γ相耐蚀性能以及与H~+结合形成NH_4~+从而抑制闭塞液酸度变化达到缓蚀效应而得以实现的。  相似文献   

12.
Stainless steels, including duplex stainless steels, are extensively used for equipment in pulp bleaching plants. One serious corrosion problem in chlorine dioxide bleach plants is crevice corrosion of stainless steels, which is frequently the factor that limits their use in bleach plants. Crevice corrosion susceptibility of alloys depends on various environmental factors including temperature, chemical composition of environment and resulting oxidation potential of system. Upsets in the bleaching process can dramatically change the corrosivity of the bleaching solutions leading to temperatures and chemical concentrations higher than those normally observed in the bleach process. When the environmental limits are exceeded the process equipment made of stainless steel can be severely affected. Environmental limits for crevice corrosion susceptibility of eight stainless steel alloys with PRE numbers ranging from 27 to 55 were determined in chlorine dioxide environments. Alloys used in this study included austenitic, ferritic-austenitic (duplex), and superaustenitic stainless steels. The performance of the different stainless steel alloys mostly followed the PRE numbers for the respective alloys. The 654SMO alloy with the highest PRE number of 55 showed the highest resistance to crevice corrosion in this environment. Under the most aggressive chlorine dioxide bleach plant conditions tested, even alloys Nicr3127 and 654SMO with PRE numbers 51 and 55 respectively were susceptible to crevice corrosion attack. The two factors that seem to contribute the most to crevice corrosion and pitting in the investigated environments are temperature and potential.  相似文献   

13.
The crevice corrosion behavior of X70 pipeline steel in NaHCO3 solution with varying Cl- concentration was investigated by potentiostatic polarization method in terms of the initiation and development of crevice corrosion. Results show that inside the crevice the X70 steel could suffer from localized corrosion in NaHCO3 solution by polarization potential-0.4 V. The acidification initiated firstly at the crevice mouth and then extended gradually to the bottom. The hydrogen evolution could be observed with the development of corrosion and acidification. The cathodic reaction changed from the reduction of the dissolved oxygen to the reduction of hydrogen ions. The presence of Cl- did not change the crevice corrosion mechanism. With the increase of Cl- concentration, however, the crevice corrosion rate increased. The corrosion region moved towards the crevice bottom gradually and then pitting corrosion occurred with the increasing polarization potential. The initiation of crevice corrosion was determined by the polarization potential. © 2016, Corrosion Science and Protection Technology. All rights reserved.  相似文献   

14.
Abstract

The corrosion performances of some commercial stainless steel alloys in the brine reject solution from a reverse osmosis sea water desalination plant was studied in terms of their pitting susceptibilities (investigated under aerated conditions at ambient temperature using a cyclic polarisation technique) and crevice corrosion resistances (evaluated in the plant over a 3 month exposure period using multiple crevice test assemblies). The alloys used were four austenitic steels, UNS S31603, UNSS 31703, UNS N08904, UNS S31254, a ferritic steel UNS S44635, and a duplex steel UNS S32550. Cyclic polarisation studies show that the pitting or breakdown potentials for S31603 and S31703 occurred at more active values than for N08904, S31254, S44635, and S32550 alloys, and indicated a reduced resistance to pitting corrosion. The multiple crevice tests show that the alloys S31603, S31703, and N08904 do suffer crevice corrosion in the brine reject solution at ambient temperature, while the S44635 S32550, and S31254 alloys showed considerably higher crevice corrosion resistance.  相似文献   

15.
Carbon fiber reinforced plastics(CFRP) are promising lightweight materials for vehicle applications. 316 L is one of the most widely used types of austenite stainless steels and applied in lots of automotive applications. The existence of crevices will result in galvanic corrosion and crevice corrosion when CFRPs and 316 L are directly connected. A crevice former for the galvanic system was therefore designed and applied to evaluate the crevice corrosion behaviors and study the mechanism of galvanic crevice corrosion through several electrochemical techniques in this research. The results showed that the crevice corrosion of galvanic systems grew from crevice mouth to the inside crevice and could be divided into four steps, metastable pitting corrosion at the crevice mouth, initiating step of crevice corrosion, propagating step and ending step of crevice corrosion. Because of the influences of the galvanic system, electrode reaction rates were speeded up and the passivation region was shortened at the initiating stage of crevice corrosion. Corrosion rate was observed to be higher in the galvanic system than that in normal crevice systems.  相似文献   

16.
Within the framework of a research aimed at characterizing the behaviour of new materials to pitting and crevice corrosion, an investigation has been made, using electrochemical techniques, of the following materials: ELI ferritic stainless steels (18 Cr-2 Mo-Ti; 21 Cr-3 Mo-Ti; 26 Cr-1 Mo); high chromium duplex stainless steel (Z 5 CNDU 21-08) and high chromium-nickel austenitic stainless steel (Z 2 CNDU 25-20); commercial austenitic stainless steels (AISI 304 L and 316 L) and laboratory heats of austenitic stainless steels with low contents of interstitials (LTM/18 Cr- 12 Ni, LTM/16 Cr- 14 Ni-2 Mo). It was possible to graduate a scale of resistance to pitting and crevice corrosion in neutral chloride solutions at 40 C; in particular the two experimental austenitic stainless steels LTM/18 Cr- 12 Ni and LTM/16 Cr- 14 Ni-2 Mo are at the same level as the AISI 316 L and 18 Cr-2 Mo-Ti, respectively. An occluded cell was developed and used for determining the critical potential for crevice corrosion (Elocalized corrosion). For the steels under investigation Elocalized corrosion is less noble than Epitting especially for ELI ferritic 18 Cr-2 Mo-Ti and 21 Cr–3 Mo-Ti.  相似文献   

17.
Two experimental ELI ferritic stainless steels (22 Cr – 2.5 Ni – 3 Mo and 22 Cr – 2.5 Ni – 3 Mo – Ti) prepared in laboratory and a commercial one (21 Cr – 3 Mo – Ti) were investigated. Electrochemical and laboratory exposure tests were carried out to define the localized corrosion resistance (pitting and crevice) of such steels in chloride solution. Intergranular and stress corrosion resistance was also evaluated. Room temperature tension tests and impact tests were performed. 22 Cr – 2.5 Ni – 3 Mo – Ti and 21 Cr – 3 Mo – Ti steels are immune to intergranular corrosion whatever temperature they are heat treated at and have the same pitting corrosion resistance as a function of temperature; crevice corrosion of 22 Cr – 2.5 Ni – 3 Mo is decidely better than in the commercial 21 Cr – 3 Mo – Ti. The experimental steels were immune to stress corrosion in hot chloride environment.  相似文献   

18.
The importance of metastable pitting corrosion in the case of high alloy steels A suitable computer-aided experimental method allows during potentiostatic tests to recognize and quantitatively treat current transients. The current transients result from metastable pitting phenomena below the pit propagation potential. It is possible under certain conditions to detect metastable pitting which in the SEM appears in the form of small (approximately 1 μm), in most cases hemispherical pits. A detailed study of metastable pitting has brought about fundamental knowledge about the mechanism of pit initiation, stable pit growth and repassivation in pitting and crevice corrosion processes.  相似文献   

19.
On a phenomenon of the limitation of pitting corrosion at high alloyed special stainless steels and NiCrMo-alloys in chloride solutions Testing the pitting corrosion resistance of high alloyed special stainless steels and NiCrMo-alloys in chloride solutions there was observed a limitation of the pitting corrosion range toward more positive potentials. Above this limitation, the so-called pitting corrosion limitation potential, the pit initiation by all means is prevented, but the growth of pits which had been initiated before in the pitting corrosion range not necessarily comes to a stop. Therefore current density-potential curves which are obtained by downward polarization after an initial potential jump into the transpassive region and chronopotentiostatic tests are more suitable to investigate this phenomenon than cyclic polarization measurements and potentiostatic alteration tests. There is indicated a dependence of this phenomenon on temperature. The phenomenon of a limitation of the pitting corrosion range toward more positive potentials has been found until now at alloy 926, alloy 31, alloy 28, alloy 59 and alloy C-276.  相似文献   

20.
Abstract

The austenitic stainless steels are widely used in the food industry as constructional materials for processing plant. One of their drawbacks is a susceptibility to localised attack, particularly in the presence of the chloride anion. The various forms of localised attack which stainless steels can suffer, including pitting, crevice attack, deposit attack, stress corrosion cracking and corrosion fatigue, are illustrated with case histories drawn from the food processing industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号