首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conversion of electromagnetic energy into heat depends largely on the dielectric properties of the material being treated. Therefore, the knowledge of dielectric properties of the test specimen is required in order to understand the extent of curing using microwaves. In this study, a detailed investigation is carried out by considering a number of carbon black (CB) samples having particulate sizes in the range of 15–65 nm. The dielectric properties of the synthesized CB/epoxy nanocomposites, before and after microwave curing, are measured using the advanced cavity perturbation method (CPM). It is observed that the CB/epoxy nanocomposite having smallest particulate size i.e., 15 nm attains the maximum value of dielectric constant (εr′) and loss tangent (tan δ) of 10.79 and 0.05, respectively. These results indicate that the epoxy reinforced with the CB having least particulate size would interact more effectively with microwaves, which are confirmed by the experimental data showing that the nanocomposite with smallest CB particle size of 15 nm requires the minimum curing time. The dielectric properties especially the loss factors of fully cured samples are found to decrease after curing indicating that the dielectric properties of post cured samples can provide an idea about the extent of curing. At last, thermal, mechanical and morphological analyses are also performed on all the microwave cured epoxy samples.  相似文献   

2.
In the present work, Al-xB4C nanocomposite (x = 0, 1, 2, 3, 4 and 5 in wt%, having the average B4C size of 50 nm) were prepared using a high-energy ball mill. The milling times up to 16 h were applied. Then, the microstructural evolutions, mechanical properties, compressibility and sintering behavior of nanocomposites were investigated. The changes in powders morphology and microstructure during the milling process were characterized by laser diffraction particle size analyzer (LDA), SEM, XRD, EDS and TEM techniques. Compressibility and sintering behavior of milled powders compacted under different pressures (100–900 MPa) and at different sintering temperatures (500, 550 and 600 °C) were also studied. The pressing behavior of the nanocomposites was analyzed using linear compaction equations developed by Heckel, Panelli-Filho and Ge. The results showed the significant effects of B4C amounts and sintering temperatures on the compressibility and sintering behavior of nanocomposites. The increase in the B4C amount led to a decrease in both the compressibility rate and the sinterability of specimens. The maximum compression strength of 265 MPa and Vickers hardness of 165 VHN were obtained for Al-5 wt.% B4C nanocomposite milled for 16 h followed by sintering at 600 °C.  相似文献   

3.
Effect of the addition of trace HA particles into Mg-2Zn-0.5Sr on microstructure, mechanical properties, and bio-corrosion behavior was investigated in comparison with pure Mg. Microstructures of the Mg-2Zn-0.5Sr-xHA composites(x = 0, 0.1 and 0.3 wt%) were characterized by optical microscopy(OM),scanning electron microscopy(SEM) equipped with energy dispersion spectroscopy(EDS) and X-ray diffraction(XRD). Results of tensile tests at room temperature show that yield strength(YS) of Mg-2Zn-0.5Sr/HA composites increases significantly, but the ultimate tensile strength(UTS) and elongation decrease with the addition of HA particles from 0 up to 0.3 wt%. Bio-corrosion behavior was investigated by immersion tests and electrochemical tests. Electrochemical tests show that corrosion potential(Ecorr)of Mg-2Zn-0.5Sr/HA composites significantly shifts toward nobler direction from-1724 to-1660 m VSCE and the corrosion current density decreases from 479.8 to 280.8 μA cm~(-2) with the addition of HA particles. Immersion tests show that average corrosion rate of Mg-2Zn-0.5Sr/HA composites decreases from11.7 to 9.1 mm/year with the addition of HA particles from 0 wt% up to 0.3 wt%. Both microstructure and mechanical properties can be attributed to grain refinement and mechanical bonding of HA particles with second phases and α-Mg matrix. Bio-corrosion behavior can be attributed to grain refinement and the formation of a stable and dense CaHPO_4 protective film due to the adsorption of Ca~(2+)on HA particles. Our analysis shows that the Mg-2Zn-0.5Sr/0.3HA with good strength and corrosion resistance can be a good material candidate for biomedical applications.  相似文献   

4.
The present work deals with the toughening of brittle epoxy matrix with C8 ether linked bismaleimide (C8 e-BMI) and then study the reinforcing effect of carbon black (CB) in enhancing the conducting properties of insulating epoxy matrix. The Fourier transform infrared spectroscopy (FTIR) and Raman analysis indicate the formation of strong covalent bonds between CB and C8 e-BMI/epoxy matrix. The X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) analysis indicate the event of phase separation in 5 wt% CB loaded epoxy C8 e-BMI nanocomposites. The impact strength increased up to 5 wt% of CB loading with particle pull and crack deflection to be driving mechanism for enhancing the toughness of the nanocomposite and beyond 5 wt% the impact strength started to decrease due to aggregation of CB. The dynamic mechanical analysis (DMA) also indicates the toughness of the nanocomposites was improved with 5 wt% of CB loading due to the phase segregation between epoxy and C8 e-BMI in the presence of CB. The electrical conductivity was also increased with 5 wt% of CB due to classical conduction by ohmic chain contact.  相似文献   

5.
We report on the linear and nonlinear optical studies on TiO2–SiO2 nanocomposites with varying percentage ratio. It is found that optical band gap of the material varies with respect to the amount of the SiO2 in the composite. Nonlinear optical characterization of these samples was studied by using open as well as closed aperture Z-scan technique using an Nd:YAG laser (532 nm, 7 ns, 10 Hz). The nanocomposites showed enhanced nonlinear optical properties than pure TiO2 and this can be attributed to the surface states and weak dielectric confinement of TiO2 nanoparticles by SiO2 matrix. The nanocomposites were thermally treated and similar studies were performed. The anatase form of TiO2 in the nanocomposites showed superior properties relative to the amorphous and rutile phase of the composite. The involved mechanism is explained by taking into account the dominant role played by the excitons in the TiO2 nanoparticles.  相似文献   

6.
Metal dispersed TiO2 nanocomposites were prepared by milling process. The microwave absorbing characteristics of the prepared nanocomposites with epoxy were studied in the 8.2–12.4 GHz frequency range for the microwave absorption application. The measured relative complex permittivity of metal dispersed nanocomposite-epoxy indicates higher values in comparison to the pure TiO2-epoxy nanocomposite. The Reflection loss (RL) values were calculated for thickness from 0.1 to 2.2 mm with an interval of 0.1 mm and the maximum value of RL found for TiO2-epoxy nanocomposite was −4.96 dB at 10.21 GHz frequency for 2.0 mm thickness. Whereas, RL value is improved to a maximum value of −13.67 dB at 10.13 GHz with Al dispersion (1.8 mm thickness) and −7.24 dB at 10.38 GHz with Ni dispersion (1.3 mm thickness). This study suggests the effectiveness metal particles dispersion for the development of thin microwave absorbers as well as increasing the level of RL.  相似文献   

7.
《Composites Part A》2007,38(8):1852-1859
The influence of silane coupling agents on the microstructure and dielectric behaviour of epoxy/BaTiO3 composites was studied. Epoxy was diluted using tetrahydrofuran as solvent in order to facilitate the mixing step. Methoxy silane was applied onto ceramic particles. Different diluted aqueous solutions with 0.25, 0.35 and 0.50 wt% of silane/BaTiO3 were used. Dipping technique was utilised to obtain composite films. Dielectric measurements were performed from 25 Hz to 1 MHz and from 20 °C to 120 °C. Composites presented good dielectric properties and a strong dependence with the silane concentration.  相似文献   

8.
Rutile-phase TiO2 ceramic was rapidly fabricated by plasma activated sintering (PAS) at 650–850 °C for 3 min under 30 MPa. The temperature and frequency dependences of the dielectric properties (dielectric constant and dielectric loss) for the dense TiO2 ceramic were investigated, and the dielectric behavior was briefly discussed. It was demonstrated that extraordinarily high dielectric constant (2–5 × 104) was observed in the whole experimental ranges of ? 160 to 200 °C and 1 kHz–1 MHz. Moreover, the dielectric loss kept a relatively normal level, however, its temperature and frequency dependences were markedly different with those of the rutile-phase TiO2 preforms. The unusual dielectric behavior was related with the particular dielectric polarizations of the TiO2 ceramic and its dominant form of loss under different conditions.  相似文献   

9.
Aluminum matrix nanocomposites were fabricated via friction stir processing of an Al–Mg alloy with pre-inserted TiO2 nanoparticles at different volume fractions of 3%, 5% and 6%. The nanocomposites were annealed at 300–500 °C for 1–5 h in air to study the effect of annealing on the microstructural changes and mechanical properties. Microstructural studies by scanning and transmission electron microscopy showed that new phases were formed during friction stir processing due to chemical reactions at the interface of TiO2 with the aluminum matrix alloy. Reactive annealing completed the solid-state reactions, which led to a significant improvement in the ductility of the nanocomposites (more than three times) without deteriorating their tensile strength and hardness. Evaluation of the grain structure revealed that the presence of TiO2 nanoparticles refined the grains during friction stir processing while the in situ formed nanoparticles hindered the grain growth upon the post-annealing treatment. Abnormal grain growth was observed after a prolonged annealing at 500 °C. The highest strength and ductility were obtained for the nanocomposites annealed at 400 °C for 3 h.  相似文献   

10.
TiO2/epoxy nanocomposites were prepared at different filler concentrations varying from 3 to 12 phr (parts per hundred resin per weight). The dispersion of TiO2 was examined by Scanning Electron Microscopy and proved to be adequate. Differential Scanning Calorimetry was implemented to determine the glass to rubber transition temperature of the polymer matrix. The dielectric analysis was performed via Broadband Dielectric Spectroscopy in a wide frequency and temperature range. Five different mechanisms were observed in the spectra of the examined composites which are identified, in terms of increasing temperature at constant frequency, as γ, β, Intermediate Dipolar Effect (IDE), α and Interfacial Polarization (IP) relaxation modes. The activation energies of all relaxation modes were calculated. Finally, the dielectric response of the TiO2 nanocomposites compared to that of the TiO2 microcomposites reveals that the former exhibit significantly higher energy storage efficiency even at lower TiO2 concentration than the corresponding of the microcomposites.  相似文献   

11.
Highly filled polybenzoxazine nanocomposites filled with nano-SiO2 particles were investigated for their mechanical and thermal properties as a function of filler loading. The nanocomposites were prepared by high shear mixing followed by compression molding. A very low A-stage viscosity of benzoxazine monomer gives it excellent processability having maximum nano-SiO2 loading as high as 30 wt% (18.8 vol%) with negligible void content. Moreover, thermal analysis of the curing process of the compound of the PBA-a/nano-SiO2 composites was found to be autocatalytic in nature with average activation energy of 79–92 kJ mol−1. Microscopic analysis (SEM) performed on the PBA-a/nano-SiO2 composite fracture surface indicated a nearly homogeneous distribution of the nano-scaled silica in the polybenzoxazine matrix. In addition, the enhancement in storage modulus of the nano-SiO2 filled polybenzoxazine composites was found to be significantly higher than that of the recently reported nano-SiO2 filled epoxy composites. The dependence of the nanocomposites’ modulus on the nano-SiO2 particles content is well fitted by the generalized Kerner equation. Furthermore, the relatively high micro-hardness of the PBA-a/nano-SiO2 composites up to about 600 MPa was achieved. Finally, the substantial enhancement in the glass transition temperature (Tg) of the PBA-a/nano-SiO2 composites was also observed with the ΔTg up to 16 °C at the nano-SiO2 loading of 30 wt%. The resulting PBA-a/nano-SiO2 composite is a highly attractive candidate as coating material in electronic packaging or other related applications.  相似文献   

12.
Micron-sized porous composite particles composed of CeO2 and SiO2 nanoparticles were prepared for a UV absorption application by an aerosol spray-drying process from as-prepared CeO2 nanoparticles, commercial SiO2, and a polystyrene latex template. The morphology, structure crystallinity and pore size distribution of the as-prepared porous CeO2SiO2 composite particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Barrett-Joyner-Halenda (BJH) method, respectively. The porous CeO2SiO2 composite particles, with diameters of approximately 10 μm, showed a spherical morphology. As the contents of CeO2 in the precursor was increased from 0.25 wt% to 1.5 wt%, we observed a change in the morphology of the composite particles from compactly packed porous particles to loosely packed porous particles. The as-prepared CeO2SiO2 composite particles were composed of meso- and macropores in the range of 3–200 nm. The effect of the CeO2 content on the porous composite particles in terms of the UV absorption properties was also investigated by UV-visible spectroscopy. When the content of CeO2 exceeded 0.75 wt% in the precursor, the particles showed higher UV absorption values compared to those of commercial TiO2 nanoparticles. The as-prepared porous CeO2SiO2 composite particles can therefore be promising materials given their high UV absorption value.  相似文献   

13.
A zirconia/alumina nanocomposite stabilized with cerium oxide (Ce-TZP/Al2O3 nanocomposite) can be a good substitute as reinforcement in metal matrix composites. In the present study, the effect of the amount of 10Ce-TZP/Al2O3 particles on the microstructure and properties of Al/(10Ce-TZP/Al2O3) nanocomposites was investigated. For this purpose, aluminum powders with average size of 30 μm were ball-milled with 10Ce-TZP/Al2O3 nanocomposite powders (synthesized by aqueous combustion) in varying amounts of 1, 3, 5, 7, and 10 wt.%. Cylindrical-shape samples were prepared by pressing the powders at 600 MPa for 60 min while heating at 400–450 °C. The specimens were then characterized by scanning and transmission electron microscopy (SEM and TEM) in addition to different physical and mechanical testing methods in order to establish the optimal processing conditions. The highest compression strength was obtained in the composite with 7 wt.% (10Ce-TZP/Al2O3) sintered at 450 °C.  相似文献   

14.
《Composites Part A》1999,30(4):425-427
Ceramic nanocomposites, Si3N4 matrix reinforced with nano-sized SiC particles, were fabricated by hot pressing the mixture of Si3N4 and SiC fine powders with different sintering additives. Distinguishable increase in fracture strength at low and high temperatures was obtained by adding nano-sized SiC particles in Si3N4 with Al2O3 and/or Y2O3. Si3N4/SiC nanocomposite added with Al2O3 and Y2O3 demonstrated the maximum strength of 1.9 GPa with average strength of 1.7 GPa. Fracture strength of room temperature was retained up to 1400 as 1 GPa in the sample with addition of 30 nm SiC and 4 wt% Y2O3. Striking observation in this nanocomposite is that SiC particles at grain boundary are directly bonded to Si3N4 grain without glassy phases. Thus, significant improvement in high temperature strength in this nanocomposite can be attributed to inhibition of grain boundary sliding and cavity formation primarily by intergranular SiC particles, besides crystallization of grain boundary phase.  相似文献   

15.
TiO2 nanoparticles were pretreated with excessive toluene-2,4-diisocyanate to synthesize TDI-functionalized TiO2 (TiO2-NCO), and then the polypropylene/polyamide 6/(PP/PA6, 70/30 wt%) blends containing 3 phr of the TDI-functionalized TiO2 were prepared using twin-screw extruder followed by injection molding. Maleated polypropylene (PP-g-MAH) was used to compatibilize the blends. The mechanical properties of PP/PA6 blends based nanocomposites were studied through tensile and flexural tests. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to assess the fracture surface morphology and the dispersion of the TDI-functionalized TiO2, respectively. The dynamic mechanical properties of PP/PA6 based nanocomposites were analyzed by using dynamic mechanical thermal analyzer (DMTA). The strength and stiffness of the PP/PA6 compounds were improved significantly in the presence of PP-g-MAH. This has been attributed to the synergistic effect of TDI-functionalized TiO2 and PP-g-MAH. The PP-g-MAH compatibilized PP/PA6 compounds showed a homogeneous morphology supporting the compatibility improvement between PP, PA6 and TDI-functionalized TiO2. TEM results revealed that the TDI-functionalized TiO2 nanoparticles were exfoliated and uniformly dispersed in blends matrix. Possible chemical interactions between PP, PA6, TDI-functionalized TiO2 and PP-g-MAH were proposed based on the experimental work.  相似文献   

16.
《Composites Part A》2007,38(2):449-460
The mechanical properties and fracture behavior of nanocomposites and carbon fiber composites (CFRPs) containing organoclay in the epoxy matrix have been investigated. Morphological studies using TEM and XRD revealed that the clay particles within the epoxy resin were intercalated or orderly exfoliated. The organoclay brought about a significant improvement in flexural modulus, especially in the first few wt% of loading, and the improvement of flexural modulus was at the expense of a reduction in flexural strength. The quasi-static fracture toughness increased, whereas the impact fracture toughness dropped sharply with increasing the clay content.Flexural properties of CFRPs containing organoclay modified epoxy matrix generally followed the trend similar to the epoxy nanocomposite although the variation was much smaller for the CFRPs. Both the initiation and propagation values of mode I interlaminar fracture toughness of CFRP composites increased with increasing clay concentration. In particular, the propagation fracture toughness almost doubled with 7 wt% clay loading. A strong correlation was established between the fracture toughness of organoclay-modified epoxy matrix and the CFRP composite interlaminar fracture toughness.  相似文献   

17.
In this work, an efficient process by diluting the nano-SiCp/Al composite granules in the molten matrix under ultrasonic vibration(UV) was developed to prepare metal matrix nano-composites(MMNCs).Millimeter-sized composite granules with high content of SiC particle(8 wt%) were specially fabricated by dry high-energy ball milling(HBM) without process control agent, and then remelted and diluted in molten Al alloy under UV. The MMNCs melt was finally squeeze cast under a squeeze pressure of 200 MPa, Microstructure of the composite granules during dry HBM was investigated, and the effect of UV on microstructure and mechanical properties of the MMNCs was discussed. The results indicate that nano-SiC particles are uniformly distributed in the nano-SiCp/Al composite granules, which are covered by vestures of pure Al. During diluting, nano-SiC particles released from the composite granules are quickly dispersed in the molten matrix by UV within 4 min. Microstructure of MMNCs is significantly refined under UV and squeeze casting, eutectic Si phase modified to fine islands with an average length of 1.4 μm. Tensile strength of the squeeze cast MMNCs with 1 wt% of nano-SiC particles is 269 MPa, which is improved by 25% compared with the A356 alloy matrix.  相似文献   

18.
The spark plasma sintering (SPS) of silicon nitride (Si3N4) was investigated using nanocomposite particles composed of submicron-size α-Si3N4 and nano-size sintering aids of 5 wt% Y2O3 and 2 wt% MgO prepared through a mechanical treatment. As a result of the SPS, Si3N4 ceramics with a higher density were obtained using the nanocomposite particles compared with a powder mixture prepared using conventional wet ball-milling. The shrinkage curve of the powder compact prepared using the mechanical treatment was also different from that prepared using the ball-milling, because the formation of the secondary phase identified by the X-ray diffraction (XRD) method and liquid phase was influenced by the presence of the sintering aids in the powder compact. Scanning electron microscopy (SEM) observations showed that elongated grain structure in the Si3N4 ceramics with the nanocomposite particles was more developed than that using the powder mixture and ball-milling because of the enhancement of the densification and α-β phase transformation. The fracture toughness was improved by the development of the microstructure using the nanocomposite particles as the raw material. Consequently, it was shown that the powder design of the Si3N4 and sintering aids is important to fabricate denser Si3N4 ceramics with better mechanical properties using SPS.  相似文献   

19.
TiO2 nanomaterials were synthesized by a chemical vapor condensation and loaded with 2–10 wt% manganese by impregnation. Thermally treated particles were characterized by XRD and EXAFS. Particles with 5 wt% Mn content showed the most dispersed Mn components in the supported TiO2 with the lowest crystallinity. BET and HR-TEM showed that their surface area and pore volume increased to 299.5 m2 g?1 and 0.329 cm3 g?1, respectively. TPR and XPS showed these particles to have higher oxygen mobility and redox properties than commercial P25 similarly prepared and loaded with 5 wt% Mn2O3. They also had greater amounts of Mn3+ groups on their surfaces. 5 wt% manganese loaded TiO2 particles fabricated by CVC and impregnation are expected to have broad applicability.  相似文献   

20.
In this paper, TiO2 nanotube/polyaniline (PANI) nanocomposites were made. The thermoelectric and photosensitive properties of the nanocomposites were studied. The effects of processing time, voltage, concentration of F? ions and H3PO4 on the formation of TiO2 nanotubes were investigated. The morphologies of the synthesized nanocomposites were revealed by scanning electron microscopy (SEM). The formation of polyaniline was confirmed by both Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). The optimum conditions for the formation of well-organized TiO2 nanotubes are at 20 V for 60 min in the electrolyte containing 0.2 M fluorine ions. The highest absolute value of the Seebeck coefficient for the TiO2 nanotube/polyaniline nanocomposites is 124 μV/K at 30 °C. Pure Ti foil does not show photosensitive property, while the TiO2 nanotubes have strong photosensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号