首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Epoxy nanocomposites of different content of carbon nanofibers up to 1 wt.% have been fabricated under room temperature and refrigerated curing conditions. The composites were studied in terms of mechanical and electrical properties. Flexural modulus and hardness were found to increase significantly in refrigerated samples due to prevention of aggregates of nanofibers during cure condition. Increase and shifting in G-band by Raman spectra of these samples confirmed stress transfer and reinforcement between epoxy matrix and carbon nanofiber. Electrical conductivity improved by 3–6 orders after infusing carbon nanofibers in insulating epoxy. Room temperature samples acquired higher conductivity that was attributed to network formation by aggregates of nanofibers along the fiber alignment direction as revealed by electron microscopic studies.  相似文献   

2.
Reaction of 2,2′,2″-nitrilotris(2,1-ethanediyloxy)tris(benzoic acid) (H3L) with europium (Eu) perchloride resulted in the ball-like nanoparticles of [EuL]·6H2O which were characterized by elemental analysis (EA), infrared spectroscopy (IR) and nuclear magnetic resonance (NMR). The prepared precursor was blended into the epoxy resin by different ratio (1, 3, 5 wt.%) to make luminescent nanocomposites. Lifetime measurements suggest that the luminescence of the composite maintains the efficiency of that of the pure complex. Tensile test was carried out to evaluate the mechanical properties of the composites.  相似文献   

3.
以天然鳞片石墨为原料,通过Hummers法制备氧化石墨,微波热解剥离制备出少层数的石墨烯纳米片。以硅烷偶联剂KH-560为改性剂,超声共混制备石墨烯纳米片/环氧树脂复合材料。采用FT-IR和SEM分析样品的微观结构和形貌,测试其介电性能。结果表明,随着石墨烯纳米片添加量的增加,复合材料介电常数呈现先增大后减小的趋势,当石墨烯纳米片含量为0.3%(质量分数)时,介电常数达到最大;石墨烯纳米片对复合材料介电损耗的影响与之相反;偶联改性使复合材料的介电常数增大,介电损耗减小。  相似文献   

4.
Carbon nanotubes (CNTs) in general are considered to be highly potential fillers to improve the material properties of polymers. However, questions concerning the appropriate type of CNTs, e.g., single-wall CNTs (SWCNT), double-wall CNTs (DWCNT) or multi-wall CNTs (MWCNT), and the relevance of a surface functionalisation are still to be answered. This first part of the study focuses on the evaluation of the different types of nanofillers applied, their influence on the mechanical properties of epoxy-based nanocomposites and the relevance of surface functionalisation. The nanocomposites produced exhibited an enhanced strength and stiffness and even more important, a significant increase in fracture toughness (43% at 0.5 wt% amino-functionalised DWCNT). The influence of filler content, the varying dispersibility, the aspect ratio, the specific surface area and an amino-functionalisation on the composite properties are discussed and correlated to the identified micro-mechanical mechanisms.  相似文献   

5.
The objectives of this research article is to evaluate the mechanical and tribological properties of polyamide66/polypropylene (PA66/PP) blend, graphite (Gr) filled PA66/PP, nanoclay (NC) filled PA66/PP and NC plus short carbon fiber (NC + SCF) filled PA66/PP composites. All composites were fabricated using a twin screw extruder followed by injection molding. The mechanical properties such as tensile, flexure, and impact strengths were investigated in accordance with ASTM standards. The friction and sliding wear behaviour was studied under dry sliding conditions against hard steel on a pin-on-disc apparatus. Scanning electron micrographs were used to analyze the fracture morphologies. From the experimental investigation, it was found that the presence of NC and SCF fillers improved the hardness of PA66/PP blend. Further, the study reveals that the tensile and flexural strength of NC + SCF filled PA66/PP was higher than that of PA66/PP blend. Inclusion of micro and nanofillers reduced the wear rate of PA66/PP blend. The wear loss of the composites increased with increasing sliding velocity. The lowest wear rate was observed for the blend with nanoclay and SCF fillers. The wear rates of the blends with micro/nanofillers vary from 30–81% and lower than that of PA66/PP blend. The wear resistance of the PA66/PP composites was found to be related to the stability of the transfer film on the counterface. The results have been supplemented with scanning electron micrographs to help understand the possible wear mechanisms.  相似文献   

6.
《Advanced Powder Technology》2019,30(9):1782-1788
Epoxy resin-grafted SiO2 nanoparticles stabilized in toluene were successfully designed by the simultaneous surface modification of SiO2 nanoparticles during bead milling which involves the adsorption of polyethyleneimine-oleic acid complex (PEI-OA) and epoxy resin grafting to the free amine groups of PEI-OA (PEI-OA-Epoxy). The effectiveness of epoxy grafting on the properties of the SiO2/epoxy based nanocomposites were investigated using a bead-milled SiO2/toluene suspension stabilized with PEI-OA, PEI-OA-Epoxy, and a complex of PEI and an anionic surfactant comprising an epoxy-soluble polyethylene glycol-based chain (PEI-AS). While SiO2 nanoparticles were pulverized with similar sizes (c.a. 126–171 nm) and stabilized in toluene with any of the three surface modifications, PEI-OA-stabilized SiO2 nanoparticles aggregated during processing epoxy-based composites. PEI-AS- and PEI-OA-Epoxy-stabilized SiO2 nanoparticles maintained their dispersion stability, however, the epoxy composites with PEI-OA-Epoxy-stabilized SiO2 nanoparticles exhibited better material properties, such as increase in the strain at fracture and higher Tg.  相似文献   

7.
Nanodiamond powder (NDP) was dispersed in epoxy resin with low content by means of a high powerful ultrasonic liquid processor and then mixed with curing agent using a high-speed mechanical agitator. The good dispersion of NDP in epoxy could be observed. The mechanical properties of the NDP/epoxy nanocomposites were investigated. It was found that with a NDP content of only 0.3 wt%, the Vicker's hardness, tensile strength and tensile modulus of the NDP/epoxy nanocomposites were 24.7%, 52.7% and 54.2% higher than that of pure epoxy, respectively. The significant improvement of the mechanical properties of the NDP/epoxy nanocomposites could be attributed to the good dispersion of the NDP in the epoxy matrix and grafting of epoxy to NDP by an esterification reaction.  相似文献   

8.
The prime objective of this work is to optimize the mechanical and thermo-mechanical properties of e-glass/epoxy composites by utilizing amino-functionalized multi-walled carbon nanotubes (MWCNTs–NH2) through a combination of dispersion method. At first, 0.1–0.4 wt.% of MWCNT–NH2 was integrated into SC-15 epoxy suspension using a combination of ultra-sonication and calendaring techniques. E-glass/epoxy nanocomposites were than fabricated at elevated temperature with the modified resin using hand layup and compression hot press. 3-Point flexural and dynamic mechanical analysis (DMA) results demonstrated a linearly increasing trend in properties from 0 to 0.3 wt.% loading. Micrographs of MWCNTs incorporated epoxy and e-glass/epoxy samples revealed uniform dispersion of MWCNTs in epoxy, good interfacial adhesion between CNTs and polymer, and improved interfacial bonding between fiber/matrix at 0.3 wt.% loading. An improved dispersion and hence an improved crosslink interaction between MWCNT–NH2 and epoxy lead to the stronger shift of the mechanical and thermo-mechanical properties of the composites.  相似文献   

9.
The addition of fibres to a brittle matrix is a well-known method to improve the flexural strength. However, the success of the reinforcements is dependent on the interaction between the fibre and the matrix. This paper presents the mechanical and microstructural properties of PVA and basalt fibre reinforced geopolymers. Moreover low density and thermal resistant materials used as insulating panels are known be susceptible to damage due to their poor flexural strength. As such the thermal and fire resistance properties of foamed geopolymers containing fibre reinforcement were also investigated.The results highlight that the presence of PVA fibres greatly increased the flexural strength and the toughness of the geopolymer composite, while the presence of basalt fibres improved the flexural behaviour of the composite after high temperature exposure.  相似文献   

10.
In this work, kenaf fibers were pre-treated in a NaOH solution (6% in weight) at room temperature for two different periods (48 and 144 h). The chemical treatment of kenaf fibers for 48 h allowed to clean their surface removing each impurity whereas 144 h of immersion time had detrimental effect on the fibers surface and, consequently, on their mechanical properties.Untreated and NaOH treated kenaf fibers (i.e. for 48 h) were also used as reinforcing agent of epoxy resin composites. The effect of the stacking sequence (i.e. using unidirectional long fibers or randomly oriented short fibers) and the chemical treatment on the static mechanical properties was evaluated showing that the composites exhibit higher moduli in comparison to the neat resin. As regards the strength properties, only the composites reinforced with unidirectional layers show higher strength than the neat resin. Moreover, the alkali treatment increased the mechanical properties of the composites, due to the improvement of fiber–matrix compatibility.The dynamic mechanical analysis showed that the storage and the loss moduli are mainly influenced by the alkali treatment above the glass transition temperature. Moreover, the alkali treatment led to a notable reduction of tan δ peaks in addition to significant shifts of tan δ peaks to higher temperatures whereas the stacking sequence did not influence the trends of storage modulus, loss modulus and damping of the composites.  相似文献   

11.
In this work, a nanoscaled Ni surface coating for multi-walled carbon nanotube (MWCNT) is proposed for the improvement of the interfacial properties between MWCNTs and epoxy resins in nanocomposites. The rheological behaviors and mechanical properties of the nanocomposites were investigated in a frequency sweep experiment with oscillatory rheometry and a universal test machine, respectively. The rheological behaviors of the nanocomposites proved the good dispersion behaviors of the Ni-coated MWCNTs in the matrix, demonstrating an increase in the suspension viscosity, G″, and G′, proving the high mechanical interfacial properties of the final composites.  相似文献   

12.
为了开发高储能密度的无机/有机介电复合材料,本文采用有限元法分别研究了直径为100 nm的球形填料与基体介电常数的比值(k)、球形填料在复合材料中的排列方式、球形填料尺寸(100~300 nm)、纤维状填料长径比(α)和片状填料的球形度(β)对复合材料介电性能的影响。计算结果表明,当k值大于20时,复合材料的介电常数变化不明显;球形填料沿电场方向成链式排列时,复合材料有较大的介电常数,且材料中球形填料附近处存在较大的电位移和较大的电场,说明这种填料排列方式有利于材料介电常数的提高,但会削弱材料的耐击穿能力;当球形填料随机分布时,颗粒尺寸变化对复合材料介电常数的影响不明显。对于纤维状填料,其长径比α越大且长轴沿电场方向分布时,填料自身及周边会产生较大的电位移,表明这种情况有利于复合材料介电常数的提高。对于片状填料,其球形度β越小,填料与基体界面处高电场区域越小,表明材料的耐击穿能力越高。本研究可为高介高储能材料的实验研究提供理论指导。   相似文献   

13.
Multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites were fabricated by using ultrasonication and the cast molding method. In this process, MWCNTs modified by mixed acids were well dispersed and highly loaded in an epoxy matrix. The effects of MWCNTs addition and surface modification on the mechanical performances and fracture morphologies of composites were investigated. It was found that the tensile strength improved with the increase of MWCNTs addition, and when the content of MWCNTs loading reached 8 wt.%, the tensile strength reached the highest value of 69.7 MPa. In addition, the fracture strain also enhanced distinctly, implying that MWCNTs loading not only elevated the tensile strength of the epoxy matrix, but also increased the fracture toughness. Nevertheless, the elastic modulus reduced with the increase of MWCNTs loading. The reasons for the mechanical property changes are discussed.  相似文献   

14.
The aim of the present study is to investigate and compare the mechanical and thermal properties of raw jute and banana fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with banana fiber. The jute and banana fibers were prepared with various weight ratios (100/0, 75/25, 50/50, 25/75 and 0/100) and then incorporated into the epoxy matrix by moulding technique to form composites. The tensile, flexural, impact, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that addition of banana fiber in jute/epoxy composites of up to 50% by weight results in increasing the mechanical and thermal properties and decreasing the moisture absorption property. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope.  相似文献   

15.
16.
在空气中用高频高压电子加速器辐照多壁碳纳米管(MWCNTs),采用红外光谱、能谱分析、拉曼光谱和透射电镜表征分析辐照处理对碳纳米管结构的影响;通过原位复合法制备MWCNT/环氧树脂(EP)复合材料.采用场发射扫描电镜、热失重分析和动态力学分析研究辐照处理MWCNTs对环氧树脂热稳定性的影响.结果表明:电子束辐照处理使MWCNTs表面接入了少量的含氧基团,同时破坏了MWCNTs的完整结构,当辐照剂量为170 kGy时,接枝含氧基团的量最多(约为4%),且结构破坏程度较小.与原始MWCNT/EP体系相比,经电子束辐照处理后的MWCNTs在EP中分散得更均匀,并能使材料的最大热分解温度和玻璃化转变温度较纯EP有所提高,在EP中加入质量分数0.5%的经170kGy辐照处理后的MWCNTs,能够使材料的最大热分解温度和玻璃化转变温度分别提高约14℃和8℃.  相似文献   

17.
选择在低密度聚乙烯(LDPE)中掺杂无机纳米ZnO和蒙脱土(MMT)颗粒,探讨不同形态无机纳米颗粒对LDPE介电性能的影响。利用熔融共混法配合不同冷却方式制备不同结晶形态的纳米ZnO/LDPE和MMT/LDPE复合材料。通过FTIR、偏光显微镜(PLM)、SEM、DSC和热刺激电流(TSC)对试样进行表征,并。研究了纳米ZnO/LDPE和MMT/LDPE复合材料的交流击穿特性,结果表明:掺杂适当质量分数并经表面修饰的无机纳米颗粒可有效的避免其团聚现象,提高纳米ZnO/LDPE和MMT/LDPE复合材料的结晶速率,使结晶结构更完善,同时无机纳米颗粒掺杂使LDPE的陷阱密度和深度均有所增加,载流子入陷在试样内部形成界面"局域态"。经油冷却方式制备的纳米ZnO/LDPE和MMT/LDPE复合材料击穿场强比空气自然冷却分别高13.6%和14.4%,当掺杂纳米粒子质量分数为3wt%时,复合材料击穿场强出现最大值,其中纳米ZnO/LDPE复合材料比MMT/LDPE复合材料的击穿场强值高0.68%;电导率试验结果表明:纳米ZnO/LDPE复合材料电导率比MMT/LDPE复合材料低。介电性能测试表明,在1~105 Hz的测试频率范围内,纳米ZnO/LDPE复合材料和MMT/LDPE复合材料介电常数降低,介质损耗角正切值有所提高。  相似文献   

18.
Mechanical reinforcement of polymer matrices loaded by carbon nanotubes is expected to benefit by both the high aspect ratio and the very high modulus of such nanofillers and, consequently, it depends not only by their content within the hosting system but also by the state of dispersion. This work analyses the effect on the bending modulus of dispersed multi-walled carbon nanotube (MWCNT) into an epoxy system. Results indicate that reinforcement efficiency is characterised by two limiting behaviours whose transition region coincides with the development of a percolative network of nanotubes. Well below the percolation threshold, the carbon nanotubes, contribute to the composite modulus with their exceptional modulus (in this case a value of 1.780 TPa was found), whereas it dramatically decreases above this limit due to the reduction of the effective aspect ratio and the micron sized cluster formation. An estimate of the maximum reinforcement induced by carbon nanotubes has been proposed based on percolation and stress transfer theory for large aspect ratio fillers.  相似文献   

19.
双马来酰亚胺/钛酸钡复合材料介电性能的研究   总被引:1,自引:0,他引:1  
晁芬  梁国正 《功能材料》2007,38(A02):654-657
以双马来酰亚胺(BMI)为树脂基体,压电陶瓷BaTiO,为功能填料,采用浇铸的方法制备了BMI/BaTiO3复合材料。考察了复合材料的介电性能,并用多种混合法则对复合材料的介电常数进行拟合分析。研究结果表明,BaTiO3含量的增加提高了材料的介电常数,同时增加了材料的介电损耗;BMUBaTiO3复合材料的介电性能具有良好的频率稳定性:使用Lichterecker混合规则的拟合结果与实验测试结果具有很好的一致性。  相似文献   

20.
The effect of adding graphene in epoxy containing either an additive (MP) or reactive-type (DOPO) flame retardant on the thermal, mechanical and flammability properties of glass fiber-reinforced epoxy composites was investigated using thermal analysis; flexural, impact, tensile tests; cone calorimetry and UL-94 techniques. The addition of MP or DOPO to epoxy had a thermal destabilization effect below 400 °C, but led to higher char yield at higher temperatures. The inclusion of 10 wt% flame retardants slightly decreased the mechanical behavior, which was attributed to the poor interfacial interactions in case of MP or the decreased cross-linking density in case of DOPO flame retarded resin. The additional graphene presence increased flexural and impact properties, but slightly decreased tensile performance. Adding graphene further decreased the PHRR, THR and burning rate due to its good barrier effect. The improved fire retardancy was mainly attributed to the reduced release of the combustible gas products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号