首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work we report the design and synthesis of CdSe/TiO2 nanotube arrays (NTAs) and their implementation as a photoanode for photoelectrochemical (PEC) application. CdSe nanoparticles with well dispersion were decorated on the inner and outer surfaces of 2.5 μm-long TiO2 nanotubes via electrodeposition. These CdSe/TiO2 NTAs exhibit a significant photocurrent responds under visible light illumination (λ  420 nm). The results presented in this study display a promising method that the photoelectrochemical performance could be improved via composition, size and crystalline control of CdSe/TiO2 NTAs. And the tubular morphology is also able to facilitate charge transport in nanostructure-based PEC cells. This research demonstrates a new approach, which have great potential applications in fabricating novel heterostructure-photoelectrochemical devices.  相似文献   

2.
Nitrogen (n)-doped titanium dioxide (TiO2) was prepared with varying doping extent by a general sol–gel process with a pure TiO2 film as the control sample. The n-doped-2 electrode showed the maximum conversion efficiency with an open-circuit voltage (Voc) of 0.726 V, a photocurrent (Jsc) of 10.52 mA cm?2, a fill factor of 63.6%, and an efficiency of 4.86%, compared to 0.751 V, 7.4 mA cm?2, 67.1%, and 3.73%, respectively, for the undoped (u-doped) TiO2 electrode. The approximate 23% enhancement in the conversion efficiency of the n-doped-2 TiO2 electrode-based dye-sensitized solar cells (DSSCs) was mostly ascribed to the increase of light absorption in the near-vis absorbance and partially to the morphological characteristics of the n-doped TiO2 film. Additionally, the doping type of nitrogen in the TiO2 lattice was closely studied using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The relation between the doping type and the electron behavior in the DSSCs was also examined.  相似文献   

3.
In the present study, TiO2 and graphene oxide (GO)/TiO2 composite films were simply fabricated by hot-plate spray coating technique. The influences of TiO2 dimension and GO content on the self-cleaning activity of methylene blue (MB)-stained films were investigated. The matrix of anatase TiO2 quasi-cubic and octahedral particles in diameter of 6–9 nm (ST film) degraded 80% stained dye, much higher than those either in bigger size (30–50 nm) or in flower morphology due to the nano effect. Moreover, the photocatalytic performance of such nanostructured film was strongly enhanced by the combination with GO sheets. Increasing GO content led to significant enhancement in film transmittance and MB adsorptivity. In the aspect of the self-cleaning activity for MB, the addition of GO up to 1 wt.% showed higher efficiency but excess content led to similar performance in comparison with pure TiO2 film.  相似文献   

4.
Three-dimensional (3D) interconnected porous architectures are expected to perform well in photoelectrochemical (PEC) water splitting due to their high specific surface area as well as favourable porous properties and interconnections. In this work, we demonstrated the facile fabrication of 3D interconnected nanoporous N-doped TiO2 (N-TiO2 network) by annealing the anodized 3D interconnected nanoporous TiO2 (TiO2 network) in ammonia atmosphere. The obtained N-TiO2 network exhibited broadened light absorption, and abundant, interconnected pores for improving charge separation, which was supported by the reduced charge transfer resistance. With these merits, a remarkably high photocurrent density at 1.23 V vs. reversible hydrogen electrode (RHE) was realized for the N-TiO2 network without any co-catalysts or sacrificial reagents, and the photostability can be assured after long term illumination. In view of its simplicity and efficiency, this structure promises for perspective PEC applications.  相似文献   

5.
TiO2 is one of the most promising photoanodes for solar-hydrogen conversion by water splitting. However, the solar-hydrogen efficiency of TiO2 remains limited because of a low photocurrent generation. A clear understanding of photoexcitations within photoanodes can predict the quantity of photocurrent and consequently determine the solar-hydrogen efficiency. In this work, hydrothermally synthesized rutile TiO2 nanorods were investigated for their photoelectrochemical (PEC) performance. A photogenerated hole concentration of TiO2 photoanode was derived as 8.40 × 1014 cm−3 under one sun illumination. In addition, Fermi level pinning associated with high density of surface states was also observed under PEC operation. Base on these results, a series of band diagrams of TiO2 photoanode were established to describe the photogeneration of holes and current at various bias potential. The main limitation of photocurrent generation is the distribution of surface-trapped states, which determines the hole concentration at the surface and consequently determines the open-circuit potential and the photocurrent density.  相似文献   

6.
The UV-induced wetting effect on titanium oxide surface is well-known; however, the UV-induced hydrophilicity of titanium implanted soda-lime silicate glass has not been investigated. Hence the contact angle of water droplet under the indoor fluorescent lights on titanium-ion implanted soda-lime silicate glasses was investigated. The silicate glasses were implanted by MEVVA ion implanter by 40 keV titanium ions with a fluence of 1015 ions cm?2. The contact angle, the chemical bonding environment, and surface morphologies were examined. Results show the formation of TiO2, the increase of surface roughness, and the reduction of the contact angle after the ion implantation. Further enhancement of hydrophilicity after the 254 nm pre-UV irradiation for 1 h on the implanted sample surface was observed. The enhancement of the wetting effect after ion implantation could be attributed to rougher TiO2 content surface. However, according to the mechanisms of UV photo-induced hydrophilicity on TiO2 proposed previously, the enhancement of hydrophilicity of titanium implanted surface with and without 254 nm pre-photon radiation can be attributed to not only the reduction of hydrocarbon on surface during the UV radiation but also to the oxygen vacancies produced by 254 nm UV photon irradiation.  相似文献   

7.
TiO2‐based photoanodes have attracted extensive attention worldwide for photoelectrochemical (PEC) water splitting, but these materials still suffer from poor electron–hole separation and low photoconversion efficiency. Here, the high PEC water splitting activity and long‐term stability against photocorrosion of well‐aligned hierarchical TiO2@CoNi‐layered double hydroxides nanotube arrays (TiO2@CoNi‐LDHs NTAs) are reported. The typical TiO2@CoNi‐LDHs NTAs exhibits enhancing photocurrent density of 4.4 mA cm?2 at a potential of 1.23 V (vs reversible hydrogen electrode) under AM 1.5G simulated sunlight (100 mW cm?2), 3.3 times higher than that of the pristine TiO2 sample. Moreover, this hierarchical electrode displays excellent stability against photocorrosion with initial activity loss no more than 1.0% even after 10 h irradiation in Na2SO4 electrolyte solution (pH 6.8), much competitive to those reported TiO2‐based photoelectrodes. This work may offer a combinatorial synthesis strategy for the preparation of hierarchical architectures with high PEC performances.  相似文献   

8.
《Advanced Powder Technology》2014,25(6):1679-1687
This paper outlines a new strategy to optimize the performance of electrodes in dye-sensitized solar cells (DSSCs), through the engineering of electronic structures in conjunction with the micro-structures of the devices. We propose a simple hydrolysis method for the fabrication of a family of quasi-core–shell TiO2 (hydrolysis)/PbS composites for working electrodes. Measurements confirm a shift in absorption from the UV to visible range. We also measured cell performance, including short-circuit photocurrent, open-circuit photovoltage, and the power conversion efficiency (η) of DSSCs. The obtained η of DSSC (6.05%) with a TiO2 (P-25)/TiO2 (hydrolysis) + 0.005 M PbS electrode is substantially higher than that of the conventional DSSC (5.11%) with a TiO2 (P-25) electrode, due to improved p–n junctions, light-scattering, and light absorption. Finally, the shell of TiO2 (hydrolysis) protected the core of PbS from the corrosive effects of electrolytes, thereby prolonging the life span of the DSSC. This novel approach to electrode design could lead to advances in DSSC as well as other energy applications including photo-catalysis technology.  相似文献   

9.
A method for fast air purification using high concentration aerosol of TiO2 nanoparticles is evaluated in a model chemical catastrophe involving toxic vapors of diisopropyl fluorophosphate (DFP). Mice are used as human model in a closed 100 dm3 chamber. Exposure of mice to 37 ppm of DFP vapor for 15 min resulted in acute poisoning. Spraying TiO2 aerosol in 2 min after the start of exposure to DFP vapors resulted in quick removal of DFP vapors from the chamber's air. Animals did not show signs of poisoning after the decontamination experiment and exposure to TiO2 aerosol alone. Reactive oxygen species (ROS) and antioxidant activity (AOA) of mice blood plasma were measured for animals exposed to sound of aerosol generator, DFP vapors, TiO2 aerosol and DFP vapors + TiO2 aerosol. Reduced ROS and increased AOA were found for mice exposure to sound, DFP and TiO2 aerosol. Exposure to DFP and decontamination with TiO2 nanoparticles resulted in decreased AOA in 48 h following the exposure. The results suggest that application of TiO2 aerosol is a powerful method of air purification from toxic hydrolysable compounds with moderate health aftermaths and requires further study and optimization.  相似文献   

10.
Chromium doped titanium dioxide (TiO2) nanocrystal films with various doping concentration have been successfully prepared by a sol–gel dip-coating process. These films have been characterized by XRD, XPS, AFM, and UV–vis absorption spectroscopy. It is found that Cr doping can effectively reduce the transition temperature of anatase to rutile phase as well as the grain size. The absorption edges of TiO2 thin films shift towards longer wavelengths (i.e. red shifted) from 375 nm to about 800 nm with increasing Cr concentration, which greatly enhances TiO2 nano-materials on the absorption of solar spectrum. The appearance of UV–vis absorption features in the visible region can be ascribed to the newly formed energy levels such as Cr 2p level and oxygen vacancy state between the valence and the conduction bands in the TiO2 band structure. The enhancement of the photocatalytic properties is observed for Cr-doped TiO2 thin film.  相似文献   

11.
We report the fabrication of self-organized partial crystalline TiO2 nanotube arrays in 1, 2-propanediol containing fluoride ion. The influence of anodization parameters including NH4F concentration, water content, anodization voltage and time on the morphology, diameter and length of TiO2 nanotube were investigated in detail. The prepared TiO2 nanotube has diameter in 30–120 nm and length in 0.6–3 μm. TiO2 nanotube arrays are used as photoanode for the application in dye-sensitized solar cell and the photovoltaic performance of 1.91% is achieved with a TiO2 nanotube sample of 2.2 μm in length combining with N719 dye, and the corresponding photovoltaic parameters of 3.6 mA cm?2 in short circuit photocurrent density, 840 mV in open circuit potential, and 63.2% in fill factor.  相似文献   

12.
Polycrystalline titania and Nb:TiO2 thin films were deposited by RF magnetron sputtering. The influence of post-deposition annealing in vacuum and hydrogen atmosphere on the structure, morphology, oxidation states and optical properties was studied by X-ray diffraction, atomic force microscopy, XPS and UV–VIS spectroscopy. The heat treatment of titanium dioxide thin films in vacuum and H2 atmosphere induces structural and morphological changes. The band gap narrowing was observed for the transparent as-deposited Nb:TiO2 films, while annealing at 420 °C in H2 atmosphere resulted in an enhancement of the electrical conductivity. Further on, TiO2/p-CdTe photovoltaic devices with efficiency of 1.8% were fabricated and their characteristic ‘enhancement’ is discussed.  相似文献   

13.
The NiO/TiO2-B hybrid nanomaterials were synthesized by a hydrothermal process and subsequently a uniform precipitation-method. The phase and morphology of the NiO/TiO2-B hybrid nanomaterials can be controlled to be either nanoparticles or nanosheets by varying the experimental conditions, e.g., the reaction time, the concentration of Ni(NO3)2·6H2O, and the precipitants. We systematically studied the mechanism of morphology evolution which is mainly affected by the reaction conditions. It is found that the NiO nanosheets are intensively and perpendicularly aggregated on the TiO2-B nanobelts. The mechanisms of the nanosheets growth and the formation of NiO/TiO2-B hybrid nanomaterials were discussed based on their morphology evolution processes. The NiO/TiO2-B hybrid nanomaterials deliver a high discharge capacity of 395 mAh g 1 and 96.2% capacity retentions over 50 cycles, implying excellent cycling stability with reversible capacity which is 7.8% higher than that of isolated TiO2-B nanobelts. This excellent electrochemical performance of the morphology-controlled NiO/TiO2-B hybrid nanomaterials has a significant potential for lithium-ion battery application.  相似文献   

14.
To prevent bacterial proliferation on biomedical titanium implants, significant efforts have been focused on modifying its surface composition and structure. In this study, nanostructured titania (TiO2) films with different concentrations of silver were prepared by magnetron sputtering and subsequently annealed at 600 °C in air. The effects of silver concentrations on microstructure, antibacterial property, corrosion resistance and hardness were studied. The results indicate that silver contribute to the growth of the TiO2 grains and is uniformly dispersed on the surface of annealed samples. The annealed films with a thickness of about 2.5 μm are uniform and mainly composed of rutile phase and pure titanium. Silver mainly exists in the metallic state in the TiO2 films. The Ag-doped TiO2 films can effectively kill Staphylococcus aureus within 24 h and the antibacterial ability increases with the silver content. The dynamic potential polarization results show that silver incorporation into TiO2 films slightly lower the corrosion potential, but significantly decrease the current density, and the current density decreases as the silver addition increases. Moreover, the hardness of the Ag-doped TiO2 films is also greatly improved.  相似文献   

15.
A novel magnetically separable heterogeneous photocatalyst TiO2/CoFe2O4 nanofiber was prepared by sol–gel method and electrospinning technology, followed by heat treatment at 550 °C for 2 h. The phase structure, morphology and magnetic property of the composite nanofibers were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscope and vibrating sample magnetometer analysis. The photocatalytic studies of TiO2/CoFe2O4 fibers suggested that the presence of CoFe2O4 not only enhanced the absorbance of UV light, but also broadened the response region to visible light. The decolorizing efficiency of methylene blue (MB) solution reaches 95.87% over TiO2/CoFe2O4 nanofibers under 300 W Hg lamp after 5 h, which is close to that of Degussa P25. Furthermore, these fibers can be collected with a magnet for reuse and effectively avoid the secondary pollution of the treated water.  相似文献   

16.
Phase transition and microstructure evolution during carbothermal reduction–nitridation of TiO2 in an open system were investigated using XRD, TGA, SEM and laser particle analysis device. The results show that, the phase evolution sequences are: TiO2 (anatase)  TiO2(rutile)  TinO2n-1(n ? 4)  Ti3O5  Ti(N,O)  Ti(C,N,O)  Ti(C,N). In the reaction process, the predominant reaction mechanism is TiO2/C solid–solid reaction in the beginning and subsequent the gas–solid reactions mainly between oxides and CO, C and CO2. The synthesizing powders gradually become finer in form of uniform spherical particles with the formation of cubic phase.  相似文献   

17.
In this paper, a new method is proposed for the decolorization of a yellow-hued suspension of rutile TiO2 nanoparticles in an organic solvent (diethylene glycol dimethylether). The presence of color has always been undesirable in a suspension of nanoparticles filler used for industrial needs, particularly for optical applications.A colorless suspension was achieved by irradiating well-dispersed TiO2 nanoparticles in an organic solvent with UV-light (λ = 254 nm) for 5 h. TiO2 nanoparticles of 1 and 5 wt.% were dispersed using a beads mill method. Trimethoxytrifluor(propyl) silane was used as a dispersant to achieve stability. The effect of the UV-light irradiation on the TiO2 nanosuspension was investigated by means of a Fourier transform nuclear magnetic resonance analyzer (FT-NMR). The dispersant was partially desorbed due to the interaction of UV light and the TiO2/dispersant complex. Thus, an enhanced transparency and the absence of color were obtained for well-dispersed TiO2 nanoparticles in an organic solvent.  相似文献   

18.
Rutile-phase TiO2 ceramic was rapidly fabricated by plasma activated sintering (PAS) at 650–850 °C for 3 min under 30 MPa. The temperature and frequency dependences of the dielectric properties (dielectric constant and dielectric loss) for the dense TiO2 ceramic were investigated, and the dielectric behavior was briefly discussed. It was demonstrated that extraordinarily high dielectric constant (2–5 × 104) was observed in the whole experimental ranges of ? 160 to 200 °C and 1 kHz–1 MHz. Moreover, the dielectric loss kept a relatively normal level, however, its temperature and frequency dependences were markedly different with those of the rutile-phase TiO2 preforms. The unusual dielectric behavior was related with the particular dielectric polarizations of the TiO2 ceramic and its dominant form of loss under different conditions.  相似文献   

19.
Nanoporous TiO2/SiO2 composite micro-particles were prepared by an aerosol assisted co-assembly (AACA) and their characteristics were investigated for photocatalytic application. The average diameter of resulting co-assembled TiO2/SiO2 particles was ranged 4–10 μm, and increased as the precursor concentration increased. The TiO2/SiO2 particles were spherical in shape and pores ranged 1–100 nm in diameter. Photocatalytic activity of the as-prepared nanoporous TiO2/SiO2 particles was evaluated by measuring the photodegradation of methylene blue (MB) and NOx. Furthermore, the photocatalytic activity of nanoporous TiO2/SiO2 particles was compared with those of commercial TiO2 nanoparticles and nanoporous TiO2 particles. The nanoporous TiO2/SiO2 particles exhibited the highest photodegradation of MB and NOx among three samples, which was 80% after 3 h and 55% at 10 min, respectively.  相似文献   

20.
TiO2 nanotubes are the building units of various devices of energy- and environment-related applications and the property studies of individual TiO2 nanotubes are important to understand and improve the performance of TiO2 nanotubes-based devices. Here we report the electrical property study of individual TiO2 nanotubes enabled by the construction of field effect transistors based on individual TiO2 nanotubes. It is found that individual TiO2 nanotubes exhibit typical n-type electrical conduction characteristics, with electron mobility of 6.9 × 10?3 cm2/V s at Vds = 1 V, and electron concentration of 2.8 × 1017 cm?3. Moreover, the on–off ratio of the TiO2 nanotube-based field effect transistors is as high as 103. Humidity sensing test shows the sensitive response of the individual TiO2 nanotubes to water vapor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号