首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct growth of graphene on glass can bring an innovative revolution by coupling the complementary properties of traditional glass and modern graphene (such as transparency and conductivity), offering brand new daily‐life related applications. However, preparation of high‐quality graphene on nonmetallic glass is still challenging. Herein, the direct route of low sheet resistance graphene on glass is reported by using in situ‐introduced water as a mild etchant and methane as a carbon precursor via chemical vapor deposition. The derived graphene features with large domain sizes and few amorphous carbon impurities. Intriguingly, the sheet resistance of graphene on glass is dramatically lowered down to ≈1170 Ω sq?1 at the optical transmittance ≈93%, ≈20% of that derived without the water etchant. Based on the highly conductive and optical transparent graphene on glass, a see‐through thermochromic display is thus fabricated with transparent graphene glass as a heater. This work can motivate further investigations of the direct synthesis of high‐quality graphene on functional glass and its versatile applications in transparent electronic devices or displays.  相似文献   

2.
Bilayer graphene (BLG) comprises a 2D nanospace sandwiched by two parallel graphene sheets that can be used to intercalate molecules or ions for attaining novel functionalities. However, intercalation is mostly demonstrated with small, exfoliated graphene flakes. This study demonstrates intercalation of molybdenum chloride (MoCl5) into a large‐area, uniform BLG sheet, which is grown by chemical vapor deposition (CVD). This study reveals that the degree of MoCl5 intercalation strongly depends on the stacking order of the graphene; twist‐stacked graphene shows a much higher degree of intercalation than AB‐stacked. Density functional theory calculations suggest that weak interlayer coupling in the twist‐stacked graphene contributes to the effective intercalation. By selectively synthesizing twist‐rich BLG films through control of the CVD conditions, low sheet resistance (83 Ω ??1) is realized after MoCl5 intercalation, while maintaining high optical transmittance (≈95%). The low sheet resistance state is relatively stable in air for more than three months. Furthermore, the intercalated BLG film is applied to organic solar cells, realizing a high power conversion efficiency.  相似文献   

3.
Growing high quality graphene films directly on glass by chemical vapor deposition(CVD)meets a growing demand for constructing high-performance electronic and optoelectronic devices.However,the graphene synthesized by prevailing methodologies is normally of polycrystalline nature with high nucleation density and limited domain size,which significantly handicaps its overall properties and device performances.Herein,we report an oxygen-assisted CVD strategy to allow the direct synthesis of 6-inch-scale graphene glass harvesting markedly increased graphene domain size(from 0.2 to 1.8μm).Significantly,as-produced graphene glass attains record high electrical conductivity(realizing a sheet resistance of 900Ω·sq-1at a visible-light transmittance of 92%)amongst the state-of-the-art counterparts,readily serving as transparent electrodes for fabricating high-performance optical filter devices.This work might open a new avenue for the scalable production and application of emerging graphene glass materials with high quality and low cost.  相似文献   

4.
Plasma‐enhanced chemical vapor deposition (PECVD) is an applicable route to achieve low‐temperature growth of graphene, typically shaped like vertical nanowalls. However, for transparent electronic applications, the rich exposed edges and high specific surface area of vertical graphene (VG) nanowalls can enhance the carrier scattering and light absorption, resulting in high sheet resistance and low transmittance. Thus, the synthesis of laid‐down graphene (LG) is imperative. Here, a Faraday cage is designed to switch graphene growth in PECVD from the vertical to the horizontal direction by weakening ion bombardment and shielding electric field. Consequently, laid‐down graphene is synthesized on low‐softening‐point soda‐lime glass (6 cm × 10 cm) at ≈580 °C. This is hardly realized through the conventional PECVD or the thermal chemical vapor deposition methods with the necessity of high growth temperature (1000 °C–1600 °C). Laid‐down graphene glass has higher transparency, lower sheet resistance, and much improved macroscopic uniformity when compare to its vertical graphene counterpart and it performs better in transparent heating devices. This will inspire the next‐generation applications in low‐cost transparent electronics.  相似文献   

5.
硝酸掺杂提高石墨烯透明导电膜导电性研究   总被引:1,自引:0,他引:1  
石墨烯同时具备高透过率和良好的导电性可作为透明导电材料,然而由于CVD法制备的石墨烯的多畴特性,以及石墨烯本征载流子浓度较低,目前石墨烯透明导电膜方阻偏高,还无法满足实际应用需要,因此探索提高石墨烯的导电性对推进石墨烯透明导电膜应用发展是非常重要的。通过掺杂提高石墨烯的载流子浓度从而提高石墨烯的导电性是其中一条重要途径。采用CVD法在铜箔上制备了石墨烯透明导电膜,并用硝酸处理石墨烯,研究了掺杂作用对石墨烯载流子浓度以及电导率的影响。实验结果证实硝酸处理会在石墨烯中引入P型掺杂,掺杂使得载流子的浓度增加了约2.5倍。方阻从530~205Ω/□,显著改善了石墨烯的导电性能,而石墨烯高透过率特性并未因掺杂而降低。  相似文献   

6.
Post-growth transfer and high growth temperature are two major hurdles that research has to overcome to get graphene out of research laboratories. Here, using a plasma-enhanced chemical vapour deposition process, we demonstrate the large-area formation of continuous transparent graphene layers at temperatures as low as 450?°C. Our few-layer graphene grows at the interface between a pre-deposited 200 nm Ni catalytic film and an insulating glass substrate. After nickel etching, we are able to measure the optical transmittance of the layers without any transfer. We also measure their sheet resistance directly and after inkjet printing of electrical contacts: sheet resistance is locally as low as 500 Ω sq?1. Finally the samples equipped with printed contacts appear to be efficient humidity sensors.  相似文献   

7.
Here, we report synthesis of large area graphene sheets by control pyrolysis of solid botanical derivative camphor (C10H16O) and fabrication of transparent electrodes. Raman study shows highly ordered graphene sheet with minimum defects. Second order Raman spectrum shows that graphene layers are more than single layer and can be controlled with amount of camphor pyrolyzed. Transmission electron microscopic images show presence of 4 layers for thinner and 13 layers for thicker graphene sheets. Transferred graphene sheets on glass substrates show very good transparency in wide range of wavelength (0.3-2 μm). Electrical measurements of the graphene sheets show thickness dependent sheet resistance. A sheet resistance of 203 Ω/sq is obtained at a transmittance of 63.5% of the graphene sheet. The technique to fabricate few layer of graphene as transparent electrode from camphor is both viable and scalable for potential large area optoelectronic applications.  相似文献   

8.
Wu W  Yu Q  Peng P  Liu Z  Bao J  Pei SS 《Nanotechnology》2012,23(3):035603
Large-scale and transferable graphene films grown on metal substrates by chemical vapor deposition (CVD) still hold great promise for future nanotechnology. To realize the promise, one of the key issues is to further improve the quality of graphene, e.g., uniform thickness, large grain size, and low defects. Here we grow graphene films on Cu foils by CVD at ambient pressure, and study the graphene nucleation and growth processes under different concentrations of carbon precursor. On the basis of the results, we develop a two-step ambient pressure CVD process to synthesize continuous single-layer graphene films with large grain size (up to hundreds of square micrometers). Scanning electron microscopy and Raman spectroscopy characterizations confirm the film thickness and uniformity. The transferred graphene films on cover glass slips show high electrical conductivity and high optical transmittance that make them suitable as transparent conductive electrodes. The growth mechanism of CVD graphene on Cu is also discussed, and a growth model has been proposed. Our results provide important guidance toward the synthesis of high quality uniform graphene films, and could offer a great driving force for graphene based applications.  相似文献   

9.
Transparent conducting films of SnO2 doped with antimony were prepared on glass substrates by activated reactive evaporation for the first time. The sheet resistance and optical transmittance in the wavelength range 0.4–1.6 μm were studied as functions of various deposition parameters such as the ambient pressure of an 85%Ar15%O2 mixture, the substrate temperature and the antimony doping concentration in the SnSb alloys. The sheet resistance and optical transmittance showed a strong dependence on the above-mentioned deposition parameters. The best results were obtained for a 90at.%Sn10at.%Sb alloy evaporated in 85%Ar15%O2 at a partial pressure of about 5 × 10?4 Torr with a substrate temperature about 350°C. These films, with a sheet resistance of 10 μ/□ had an average transmittance of 95% over the wavelength range 0.4–1.8 μm. The film thickness was about 0.25 μm. Thicker films (about 0.5 μm) had a sheet resistance as low as 1.5 ω/□ with an average transmittance 85% in the wavelength range 0.4–1.6 μm.  相似文献   

10.
The synthesis of Bernal‐stacked multilayer graphene over large areas is intensively investigated due to the value of this material's tunable electronic structure, which makes it promising for use in a wide range of optoelectronic applications. Multilayer graphene is typically formed via chemical vapor deposition onto a metal catalyst, such as Ni, a Cu–Ni alloy, or a Cu pocket. These methods, however, require sophisticated control over the process parameters, which limits the process reproducibility and reliability. Here, a new synthetic method for the facile growth of large‐area Bernal‐stacked multilayer graphene with precise layer control is proposed. A thin Ni film is deposited onto the back side of a Cu foil to induce controlled diffusion of carbon atoms through bulk Cu from the back to the front. The resulting multilayer graphene exhibits a 97% uniformity and a sheet resistance of 50 Ω sq?1 with a 90% transmittance after doping. The growth mechanism is elucidated and a generalized kinetic model is developed to describe Bernal‐stacked multilayer graphene growth by the carbon atoms diffused through bulk Cu.  相似文献   

11.
This article presents a novel and simple method of liquid-phase exfoliation to fabricate graphene films that possess high conductivity and good light transparency. Graphite was exfoliated in water–ethanol mixture, with the aid of Nafion, to give highly stable graphene dispersion. Transparent graphene thin films were easily deposited by vacuum filtration from the Nafion-stabilized graphene dispersion. More important, low-temperature air-annealing (at 250 °C for 2 h) was employed to treat freshly-prepared graphene films for the first time. It demonstrates that the technique is advantageous and quite efficient for the fabrication of exfoliated graphite films with defect-free structure and high purity, confirmed by TEM, SEM, FTIR, XPS, and Raman spectra. The resulting graphene films possess a sheet resistance lower than 2.86 kΩ sq−1 and optical transmittance over 84% at a typical wavelength of 550 nm.  相似文献   

12.
Chemical vapor deposition (CVD) on catalytic metal surfaces is considered to be the most effective way to obtain large‐area, high‐quality graphene films. For practical applications, a transfer process from metal catalysts to target substrates (e.g., poly(ethylene terephthalate) (PET), glass, and SiO2/Si) is unavoidable and severely degrades the quality of graphene. In particular, the direct growth of graphene on glass can avoid the tedious transfer process and endow traditional glass with prominent electrical and thermal conductivities. Such a combination of graphene and glass creates a new type of glass, the so‐called “super graphene glass,” which has attracted great interest from the viewpoints of both fundamental research and daily‐life applications. In the last few years, great progress has been achieved in pursuit of this goal. Here, these growth methods as well as the specific growth mechanisms of graphene on glass surfaces are summarized. The typical techniques developed include direct thermal CVD growth, molten‐bed CVD growth, metal‐catalyst‐assisted growth, and plasma‐enhanced growth. Emphasis is placed on the strategy of growth corresponding to the different natures of glass substrates. A comprehensive understanding of graphene growth on nonmetal glass substrates and the latest status of “super graphene glass” production are provided.  相似文献   

13.
D. Yuvaraj  K. Narasimha Rao 《Vacuum》2008,82(11):1274-1279
ZnO films having good transmittance and conductivity were deposited by activated reactive evaporation of Zn metal on glass and Si substrates at room temperature. Optical constants and thickness of ZnO films deposited under different deposition conditions were determined both by spectroscopic ellipsometry (SE) and spectrophotometry. Structural studies showed that the films exhibited a polycrystalline wurtzite structure with the preferential oriented along the (002) plane. Electrical studies by four probe technique showed that the sheet resistance of the films varied from 106 to 50 Ω/square depending upon the oxygen partial pressure used during deposition, and this sheet resistance value increased with time. The increase in sheet resistance with time was found to be dependent on the surface morphology of the film and on the substrate over which they were deposited.  相似文献   

14.
Junctions between a single walled carbon nanotube (SWNT) and a monolayer of graphene are fabricated and studied for the first time. A single layer graphene (SLG) sheet grown by chemical vapor deposition (CVD) is transferred onto a SiO2/Si wafer with aligned CVD‐grown SWNTs. Raman spectroscopy is used to identify metallic‐SWNT/SLG junctions, and a method for spectroscopic deconvolution of the overlapping G peaks of the SWNT and the SLG is reported, making use of the polarization dependence of the SWNT. A comparison of the Raman peak positions and intensities of the individual SWNT and graphene to those of the SWNT‐graphene junction indicates an electron transfer of 1.12 × 1013 cm?2 from the SWNT to the graphene. This direction of charge transfer is in agreement with the work functions of the SWNT and graphene. The compression of the SWNT by the graphene increases the broadening of the radial breathing mode (RBM) peak from 3.6 ± 0.3 to 4.6 ± 0.5 cm?1 and of the G peak from 13 ± 1 to 18 ± 1 cm?1, in reasonable agreement with molecular dynamics simulations. However, the RBM and G peak position shifts are primarily due to charge transfer with minimal contributions from strain. With this method, the ability to dope graphene with nanometer resolution is demonstrated.  相似文献   

15.
Graphene is a single layer of carbon atoms arranged in an sp2-hybridized structure with properties far superior compared to other materials. Research and development in graphene synthesis have been rapidly growing the past few years, especially using chemical vapor deposition (CVD) over various types of carbon precursor. The nature and the type of carbon precursor is one important parameter of growth by CVD, especially for graphene production, since they can dramatically impact graphene growth yield and rate. However, effects of the used carbon precursor on graphene growth mechanisms are rarely discussed. In the course of large-scale and low-cost graphene preparation, this review on the recent trends regarding the utilization of diverse carbon precursors used to synthesize graphene via the CVD method is of great interest for development of improved or alternative synthesis methods. The details and the mechanisms involved in graphene synthesis using carbon precursors in the form of gaseous, liquids and solids are compared, analyzed and discussed thoroughly. In this review, we present a thorough overview on the impact and mechanisms of carbon precursors in achieving high-quality graphene with competitive edge in the near future.  相似文献   

16.
Recently, direct chemical vapor deposition (CVD) growth of graphene on various types of glasses has emerged as a promising route to produce graphene glass, with advantages such as tunable quality, excellent film uniformity and potential scalability. Crucial to the performance of this graphene‐coated glass is that the outstanding properties of graphene are fully retained for endowing glass with new surface characteristics, making direct‐CVD‐derived graphene glass versatile enough for developing various applications for daily life. Herein, recent advances in the synthesis of graphene glass, particularly via direct CVD approaches, are presented. Key applications of such graphene materials in transparent conductors, smart windows, simple heating devices, solar‐cell electrodes, cell culture medium, and water harvesters are also highlighted.  相似文献   

17.
Fast and uniform growth of high-quality graphene on conventional glass is of great importance for practical applications of graphene glass. We report herein a confined-flow chemical vapor deposition (CVD) approach for the high-efficiency fabrication of graphene glass. The key feature of our approach is the fabrication of a 2–4 μm wide gap above the glass substrate, with plenty of stumbling blocks; this gap was found to significantly increase the collision probability of the carbon precursors and reactive fragments between one another and with the glass surface. As a result, the growth rate of graphene glass increased remarkably, together with an improvement in the growth quality and uniformity as compared to those in the conventional gas flow CVD technique. These high-quality graphene glasses exhibited an excellent defogging performance with much higher defogging speed and higher stability compared to those previously reported. The graphene sapphire glass was found to be an ideal substrate for growing uniform and ultra-smooth aluminum nitride thin films without the tedious pre-deposition of a buffer layer. The presented confined-flow CVD approach offers a simple and low-cost route for the mass production of graphene glass, which is believed to promote the practical applications of various graphene glasses.
  相似文献   

18.
Monocrystalline ZnO nanorods (NRs) with high donor concentration are electrochemically deposited on highly conductive reduced graphene oxide (rGO) films on quartz. The film thickness, optical transmittance, sheet resistance, and roughness of rGO films are systematically studied. The obtained ZnO NRs on rGO films are characterized by X‐ray diffraction, transmission electron microscopy, photoluminescence, and Raman spectra. As a proof‐of‐concept application, the obtained ZnO NRs on rGO are used to fabricate inorganic–organic hybrid solar cells with layered structure of quartz/rGO/ZnO NR/poly(3‐hexylthiophene)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (P3HT/PEDOT:PSS)/Au. The observed power conversion efficiency (PCE, η), ≈ 0.31%, is higher than that reported in previous solar cells by using graphene films as electrodes. These results clearly demonstrate that rGO films with a higher conductivity have a smaller work function and show a better performance in the fabricated solar cells.  相似文献   

19.
Zhu  Minmin  Zhao  Anwen  Wei  Can  Ren  Fuying  Zhao  Yida  Bao  Yiping  Guo  Huilu 《Journal of Materials Science》2022,57(4):2627-2635

Alloying technique as an ancient and practical instrument has been a diverse fabricator for desirable properties of materials. Herein, utilizing the alloying engineering, we have developed a two-step process for hybrid graphene-NiW nanofibers (Gr-NiW NFs) transparent electrodes. Further analysis reveals that alloying NiW NFs significantly improve their mechanical performance, reducing the growth temperature of graphene down to?~?700 °C or below, which is far less than that of?~?1000 °C for graphene grown on Cu or Pt. More importantly, such Gr-NiW network has exhibited excellent transmittance in a broad wavelength and remarkable conductivity, which, in turn, could be tailored by the growth temperature and the W content. A high transmittance (84.2% at 550 nm) and low sheet resistance (125.4 Ohm/square) were observed at Ni NFs with 5 wt% W. The combination of excellent conductivity, high transparency and mechanical tunability makes it a promising candidate for wearable electronics and optoelectronics. Finally, an all-nanofiber-based pressure sensor on sandwiched Gr-NiW/P(VDF-TrFE)/Gr-NiW NFs was demonstrated, with high sensitivity (0.61 mV kPa?1) and excellent operation stability. This work offers deep insights into the development of transparent graphene-based electrodes via alloy engineering.

  相似文献   

20.
The idea flat surface, superb thermal conductivity and excellent optical transmittance of single‐layer graphene promise tremendous potential for graphene as a material for transparent defoggers. However, the resistance of defoggers made from conventional transferred graphene increases sharply once both sides of the film are covered by water molecules which, in turn, leads to a temperature drop that is inefficient for fog removal. Here, the direct growth of large‐area and continuous graphene films on quartz is reported, and the first practical single‐layer graphene defogger is fabricated. The advantages of this single‐layer graphene defogger lie in its ultrafast defogging time for relatively low input voltages and excellent defogging robustness. It can completely remove fog within 6 s when supplied a safe voltage of 32 V. No visible changes in the full defogging time after 50 defogging cycles are observed. This outstanding performance is attributed to the strong interaction forces between the graphene films and the substrates, which prevents the permeation of water molecules. These directly grown transparent graphene defoggers are expected to have excellent prospects in various applications such as anti‐fog glasses, auto window and mirror defogging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号