首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The partitioning effect of Al(α-phase stabilizer) and V elements(β-phase stabilizer) on strength of the primary α phases in the α/β Ti-6 Al-4 V alloy with the bimodal microstructure was investigated.It was found that partitioning of Al and V elements took place in the Ti-6 Al-4 V alloy during the recrystallization process,leading to the variation of the content of Al and V elements in the primary α phases with changing the volume fraction of the primary α phase.Nanoindentation tests reveal a general trend that the strength of the primary α phases increases with decreasing the volume fraction of the primary α phases,and such trend is independent on the loading direction relative to the c-axis of the α phase.The enhanced strength is attributed to the increase of the content of Al element in the primary α phase,but it is not dominated evidently by the change of the V content.The solid solution strengthening contributed from both the elastic strain introduced by the solute atoms and the variation of the density of states was estimated theoretically.  相似文献   

2.
The thermal stability of the microstructure of a near-α titanium alloy after aging at 750℃ was investigated using optical microscope and transmission electron microscope as well as composition analysis. Aging treatment brings about significant coarsening of grain boundary α and α platelets within the colonies for martensitic microstructure. The observed changes are related to the growth steps or ledges of the interface and lamellar termination presented in the microstructure. The composition analysis of the coarsened α plate is consistent with the growth kinetics. The α Widmanstaetten plates were coarsened due to the movement of α /β interface for Widmanstaetten microstructure, and the phase boundaries of primary α(αp) phase directly moved into the transformed β for bimodal microstructure.  相似文献   

3.
Hierarchical Cr Co Ni medium entropy alloy(MEA) thin films with a dual-phase face-centred cubic(FCC)and hexagonal closed-packed(HCP) nanostructure were prepared on M2 steel substrates by closed field unbalanced magnetron sputtering. Nanoindentation tests show an ultra-high hardness of 9.5 GPa,attributable to large amounts of innate planar defects(i.e., growth twins and stacking faults) impeding dislocation motion in the coatings. A deep analysis of undeformed and post-mortem samples reveals grain refinement as the dominant deformation mechanism in FCC dominated regions, while phase transformation and shear banding played major roles in regions occupied by HCP phase. The grain refinement was facilitated by twin/matrix lamellae, with dislocations piling up and arranging into interconnecting grain boundaries. The shear banding was accelerated by innate planar defects in the HCP phase due to a lack of slip systems. Of particular interest is the observation of HCP → FCC phase transformation, which was catalysed by deformation-induced grain reorientation with innate stacking faults acting as embryos to grow the FCC phase. The results of this work suggest that multiple deformation pathways could be activated in Cr Co Ni coatings with assistance of growth defects, thereby imparting these technically important coatings appreciable ductility.  相似文献   

4.
The precipitation characteristics of the α2 ordered phase in Ti-Al-Sn-Zr-Mo-Si-Nd alloys with various content of Al, under different aging conditions,were investigated.The distribution and size of the α2 ordered phase could precipitate at higher temperature near the critical transformation temperature for each alloy experimented.With the addition of Al content,the critical transformation temperature of α2 ordered phase increased.When the aging temperature was relatively low (650℃),the precedent precipitation of α2 ordered phase took place in primary αphase at the early stage of aging ,in the duplex microstructure (the primary α with the transformedβ) of the alloys with lower Al content.But after certain aging time (50h),the size of α2 particles was almost equal in both the primary α and the transformed β.And no obvious growth of α2 particles could be observed after 50h.  相似文献   

5.
Hot compression was conducted at a Thermecmaster-Z simulator, at deformation temperatures of 800~1040℃, with strain rates of 0.001~50 s-1 and height reduction of 50%. Grain size of the prior α phase was measured with a Leica LABOR-LUX12MFS/ST microscope to which QUANTIMET 500 software for image analysis for quantitative metallography was linked. According to the present experimental data, a constitutive relationship for a TC6 alloy and a model for grain size of the prior α phase were established based on the Arrhenius' equation and the Yada's equation,respectively. By finite element (FE) simulation, deformation distribution was determined for isothermal forging of a TC6 aerofoil blade at temperatures of 860~940℃ and hammer velocities of 9~3000.0 mm/min. Meanwhile, the grain size of the prior α phase is simulated during isothermal forging of the TC6 aerofoil blade, by combining FE outputs with the present grain size model. The present results illustrate the grain size and its distribution in the prior α phase during the isothermal forging of the TC6 aerofoil blade. The simulated results show that the height reduction, deformation temperature, and hammer velocity have significant effects on distribution of the equivalent strain and the grain size of the prior α phase.  相似文献   

6.
The thermal stability of the microstructure of a near-α titanium alloy after aging at 750℃ was investigated using optical microscope and transmission electron microscope as well as composition analysis. Aging treatment brings about significant coarsening of grain boundary α and α platelets within the colonies for martensitic microstructure. The observed changes are related to the growth steps or ledges of the interface and lamellar termination presented in the microstructure. The composition analysis of the coarsened α plate is consistent with the growth kinetics. The α Widmanstatten plates were coarsened due to the movement of α/β interface for Widmanstatten microstructure, and the phase boundaries of primary α (αp) phase directly moved into the transformed β for bimodal microstructure.  相似文献   

7.
An experimental 2618(Al-Cu-Mg-Fe-Ni) alloy added with trace Sc and Zr was prepared by ingot metallurgy (IM) method. The aging behavior of the alloy was studied by Vickers hardness measurement at 200℃ and 300℃, and the tensile properties of alloy specimens were measured at 20℃, 200℃, 250℃ and 300℃. The microstructure was observed by using optical microscope, SEM and TEM. It was found that the addition of Sc and Zr to 2618 alloy resulted in a primary Al3(Sc,Zr) phase which could refine the grain because it acts as nuclei of heterogeneous crystallization in the melt during solidification. The secondary Al3(Sc, Zr) particles were full coherent with matrix and had obvious precipitation hardening effect. They also made the S' phase precipitate more homogeneous. So the strength of alloy increases at both ambient and elevated temperatures without a decrease of ductility. The ductile fracture of alloy occurs by microvoid nucleation, growth and coalescence, so the microvoid coalescence is the dominant fracture mechanism.  相似文献   

8.
In this work, the phase transformation sequence during the continuous heating process(3℃/min) was investigated in a near β titanium alloy. The results show that the staring formation of ω phase is about267℃, and the ending precipitation temperature about 386℃ during the heating process. When the heating temperature is greater than 485℃, there are no ω phase detected within the β matrix. Combined with the microstructural characterization, it is found that ω phase facilitates the nucleation of αphase nearby the ω/β interface and has a great effect on the refinement for α phase. As compared with the specimens directly aged, the specimens with ω-assisted refinement of α phase possess high tensile strength, but there is no yield stage detected on their stress-strain curve. Combined with the analyses of the fracture morphology, the specimens with ω-assisted refinement of α phase present a brittle fracture.This is mainly ascribed to its relatively lager width of grain boundaries and the absence of widmanst?ttenα precipitates.  相似文献   

9.
The bulk multilayered Al/Fe-Mo-Si-B alloy with nanostructure was prepared by annealing the alternate layers consisting of metal Al and amorphous (Fe0.99,Mo0.01)78 Si9B13 alloy ribbons for 30 min at 873 K under pressure of 3~5.5 GPa. The structures and grain sizes of the Fe-MoSi-B nanocrystalline alloy were measured and analyzed. It was found that the pressure could restrain the growth of the grains and influence the formation of phases. The dependence of grain sizes for α-Fe(Mo,Si) and Fe2B on pressure was given. The morphologies of Al/Fe-Mo-SiB nanocrystalline alloy intedeces were observed by SEM. Two intedecial phases formed at various pressures were established by TEM and EDAX, and an unknown Fe-rich one with nanostructure was also observed. The dependence of the intedecial phases on pressure and its formation and growth mechanism were discussed  相似文献   

10.
Furnace cooling is a slow cooling process. It is of importance to study structural evolution and its effects on the properties of alloys during the furnace cooling. Decomposition of aluminium rich α phase in a furnace cooled eutectoid Zn-Al based alloy was studied by transmission electron microscopy. Two kinds of precipitates in the α phase were detected in the FCZA22 alloy during ageing at 170℃. One was the hcp transitional α" m phase which aooears as directional rods and the round precipitates. The other was the fcc α'm phase. 〈101〉. The orientation relationship between the a phase and transitional phase α'm was determined as (022)α'm (fcc)//(022^-)α(fcc), [1^-11]α'm, (fcc)//[2^-33]α(fcc). The non-equilibrium phase decomposition of the α phase is discussed in correlation with the equilibrium phase relationships.  相似文献   

11.
The liquid quenching method was adopted to study the solidification morphology and microstructure of AZglD Mg alloy in semisolid. The results indicate that cooling rate has important effects upon the solidification structures. Under the cooling rate of liquid quenching, primary α-phase grows first by attaching on the original α grains, or independent nucleation and growth. The high cooling rate makes primary α-phase grow in "rags" or dendrite shape. Eutectic solidification is carried out in terms of both dissociated growth and symbiotic growth. The dissociated growth forms rough and large β-phase at grain boundaries, while symbiotic growth forms eutectic of laminar structure. The small liquid pool inside the original α-phase solidifies basically in the same way as that of intergranular liquid, but owing to less amount of liquid phase, the eutectic solidification is mainly carried out in the dissociated pattern.  相似文献   

12.
The microstructure, high strain rate superplasticity and tensile creep behavior of directionally solidified (DS) NiAl-Mo(Hf) alloy have been investigated. The alloy exhibits dendritic structure, where dendritic arm is NiAl phase, interdendritic region is Ni3Al phase, and Mo-rich phase distributes in the NiAl and Ni3Al phases. The alloy exhibits high strain rate superplastic deformation behavior, and the maximum elongation is 104.2% at 1373 K and strain rate of 1.04×10-2 s-1. The balance between strain hardening (by dislocation glide) and strain softening (by dynamic recovery and recrystallization) is responsible for the superplastic deformation. All the creep curves of the DS NiAl-Mo(Hf) alloy have similar shape of a short primary creep and dominant steady creep stages, and the creep strain is great. The possible creep deformation mechanism was also discussed. The creep fracture data follow the Monkman-Grant relationship.  相似文献   

13.
Grain boundary precipitation and segregation play an important role in determining mechanical properties of Mg alloys. In the present work, we studied work focuses on the strengthening and deformation mechanism of coarse-grained(CG) and fine-grained(FG) Mg-Gd-Y-Ag-Zr-Ce alloy. The CG alloy is strengthened by means of age-strengthening with the formation of both basal plate γ" and prismatic plate β’ precipitates in the grain interior. While the strengthening of FC alloy is completed by intergranular alloying segregation and intragranular precipitates γ" and β’. The segregation of alloying elements at the grain boundary and formation of sub-micron particles can stabilize the grain boundary and suppress the intergranular deformation. Consequently, dislocations could be trapped near γ" and β’ precipitates in the grain interior. Unlike CG alloys, the FG alloys exhibit a heterogeneous transition from elastic to plastic deformation via the Lüders plateau. The rapid gliding dislocation multiplications and fine-grained size are necessary and sufficient conditions for the Lüders strains. Our work provides the insights on the evolution of fine-grained microstructure and helps for the design of Mg alloys with good mechanical properties.  相似文献   

14.
In the present work,crystal structure and formation mechanism of the secondary phase in Heusler NiMn-Sn-Co materials were investigated using X-ray diffraction,scanning/transmission electron microscopy and selected-area electron diffraction techniques.Experimental results showed that the secondary phase presented in both Ni_(44.1)Mn_(35.1)Sn_(10.8)Co_(10) as-cast bulk alloy and melt-spun ribbon,possessing a face-centered cubic(fcc) Ni_(17)Sn_3-type structure.The secondary phase in the as-cast bulk alloy was resulted from a eutectic reaction after the formation of a primary dendritic β phase during cooling.However in the melt-spun rapidly solidified ribbon,the secondary phase was largely suppressed as nano-precipitates distributed along the grain boundaries,which was attributed to a divorced eutectic reaction.The secondary phase exhibited partial amorphous state due to high local cooling rate.  相似文献   

15.
The flow softening is an important phenomenon during hot deformation of metallic materials.In the present work,a more evident flow softening of Ti-6 Al-4 V alloy when deformed in two-phase region was observed in coarser a grain sample,which was attributed to an accelerated dynamic transformation from harder α phase into β phases.Notably,full β microstructure was observed in coarse grain samples at strain of 1.2,while retained a phase was observed in fine a grain specimens.In the views of thermodynamics and crystallographic analysis,the in-depth mechanisms of dynamic transformation were further investigated.  相似文献   

16.
Grain shape of the hot deforming alloy is an important of material. The fractal theory was applied to analyze index to character the microstructure and performance the recrystallized microstructure of Ti-15-3 alloy after hot deformation and solution treatment. The fractal dimensions of recrystallized grains were calculated by slit island method. The influence of processing parameters on fractal dimension and grain size was studied, It has been shown that the shapes of recrystallized grain boundaries are self-similar, and the fractal dimension varies from 1 to 2. With increasing deformation degree and strain rate or decreasing deformation temperature, the fractal dimension of grain boundaries increased and the grain size decreased. So the fractal dimension could characterize the grain shape and size. A neural network model was trained to predict the fractal dimension of recrystallized microstructure and the result is in excellent agreement with the experimental data.  相似文献   

17.
The precipitation characteristics of the α2 ordered phase in Ti-AI-Sn-Zr-Mo-Si-Nd alloys with various content of Al, under different aging conditions, were investigated. The distribution and size of the α2 ordered phase changed with temperature and Al content. The dislocations were the only places where the α2 ordered phase could precipitate at higher temperature near the critical transformation temperature for each alloy experimented. With the addition of Al content, the critical transformation temperature of α2 ordered phase increased. When the aging temperature was relatively low (650℃), the precedent precipitation of α2 ordered phase took place in primary a phase at the early stage of aging, in the duplex microstructure (the primary a with the transformed (3) of the alloys with lower Al content. But after certain aging time (50 h), the size of α2 particles was almost equal in both the primary a and the transformed β. And no obvious growth of α2 particles could be observed after 50 h.  相似文献   

18.
The effect of carbon addition on microstructural evolution was studied in a near-α titanium alloy(Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-0.7Nd). It was found that flake and ribbon titanium carbides with a NaCl crystal structure formed in the as-cast alloys with carbon additions of over 0.17 wt pct. Flake carbide particles are the product of eutectic transformation and precipitate from the high-temperature β phase. The ribbon carbide particles are primary phases formed prior to the nucleation of any metallic phases. The as-cast alloys with carbide precipitation after heat-treatment atβt-30℃ followed by water quenching showed the spheroidization of α lamellae and partial dissolution of carbide particles. After annealing at βt 15℃, carbide particles are mostly distributed at the grain boundary and spheroidized through mixed grain boundary plus bulk diffusions.  相似文献   

19.
The effect of hydro gen charging on microstructural evolution and corrosion behavior of a Ti-4Al-2V-1Mo-1Fe alloy in a 3.5 wt.% NaCl solution was investigated.The results showed that the hydrogen charging induced the formation and growth of γ-TiH and δ-TiH2 phases,leading to the initiation and propagation of hydrogen-induced cracks.It was also found that hydrogen charging can change the passivity of this alloy and increase its pitting corrosion susceptibility.The main reason for these was attributed to the fo rmation of hydrides in α phase in the Ti-4Al-2V-1Mo-1Fe alloy,leading to the preferential dissolution of the α phase and thus the deterioration in the protective ability of passive film.  相似文献   

20.
High intensity power ultrasound was respectively introduced into three different solidification stages of Al–8%Si hypoeutectic alloy, including the fully liquid state before nucleation, the nucleation and growth process of primary α(Al) phase and L →(Al) +(Si) eutectic transformation period. It is found that both the primary α(Al) phase and(Al + Si) eutectic structure were refined by different degrees with various growth morphologies depending on the ultrasonic treatment stage. Based on the experimental results,the cavitation-induced nucleation due to the high undercooling caused by the collapse of tiny cavities was proposed as the major reason for refining the primary α(Al) phase. Meanwhile, obvious eutectic morphological change was observed only when ultrasound was directly introduced in the eutectic transformation stage, in which typical divorced eutectics and(Al + Si) eutectic cells with symmetrical flower shape were formed at the top of the alloy sample. The introduction of ultrasound in each solidification stage also improves the yield strength of Al–8% Si alloy to a diverse extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号