首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2 mm low carbon steel plates were successfully welded by the flat friction stir spot welding(FSSW) using double side adjustable tools, by which the keyhole formed in the conventional FSSW was eliminated and a flat surface on both the top and bottom sides of the welded joints was obtained. In addition, the hook shape usually generated in the conventional FSSW was eliminated by this technique, and the unbonded interface was parallel to the surface of the sheets. Owing to the enlarged bonded interface width by eliminating the keyhole and the intermixed interface by the adjustable probe, the plug fracture occurred under all the welding conditions in the present study. Due to the suppression of the thickness thinning and elimination of the hook shape, the joint performance was improved in the plug fracture mode. The shear tensile performance was considered to strongly depend on the microstructure in the tip area of the unbonded interface and the maximum shear fracture load of 23.0 kN was achieved in this study.  相似文献   

2.
As-cast Cu–9Al–4.5Ni–4Fe NiAl bronze (NAB) alloy was subjected to friction stir processing (FSP) in a wide range of tool rotation rates of 800–2000 rpm and traverse speeds of 50–200 mm/min. After FSP, the initial coarse microstructure of the as-cast NAB was transformed to fine structure, and the porosity defects were eliminated. However, the stir zones were characterized by inhomogeneous structure and could be divided into four regions: fine Widmanstätten primary α phase in the surface layer, banded primary α and β′ phases in the subsurface layer, equiaxed α and β′ phases in the center, and streamlike α and β′ phases at the bottom. The heterogeneous microstructure could be alleviated by adjusting the FSP parameters, but could not be completely eliminated under investigated FSP parameters. The FSP NAB exhibited significantly improved hardness, tensile strength, and ductility compared to the base metal. When the NAB was subjected to two pass FSP, its microstructure was further homogenized, resulting in apparently increased ductility with similar hardness and tensile strength.  相似文献   

3.
In this study, interstitial free (IF) steel plates were subjected to double-sided friction stir processing (FSP). The fine-grained structure with an average grain size of about 12 μm was obtained in the processed zone (PZ) with a thickness of about 2.5 mm. The yield strength (325 MPa) and ultimate tensile strength (451 MPa) of FSP IF steel were significantly higher than those of base material (BM) (192 and 314 MPa), while the elongation (67.5%) almost remained unchanged compared with the BM (66.2%). The average microhardness value of the PZ was about 130 HV, 1.3 times higher than that of the BM. In addition, the FSP IF steel showed a more positive corrosion potential and lower corrosion current density than the BM, exhibiting lower corrosion tendency and corrosion rates in a 3.5 wt% NaCl solution. Furthermore, FSP IF steel exhibited higher fatigue life than the BM both in air and NaCl solution. Corrosion fatigue fracture surfaces of FSP IF steel mainly exhibited a typical transgranular fracture with fatigue striations, while the BM predominantly presented an intergranular fracture. Enhanced corrosion fatigue performance was mainly attributed to the increased resistance of nucleation and growth of fatigue cracks. The corrosion fatigue mechanism was primarily controlled by anodic dissolution under the combined effect of cyclic stress and corrosive solution.  相似文献   

4.
An as-cast Al-Zn-Mg-Sc alloy was friction stir processed varying tool related parameters, yielding microstructures with different grain sizes (0.68, 1.8 and 5.5 μm). Significant increases in room temperature ductility were obtained in these materials with reasonable enhancement in strength. It is demonstrated that the type of microstructure produced by friction stir processing (FSP) has a significant influence on the choice of post-FSP heat treatment design for achieving improved tensile properties. It is also found that the ultrafine grained FSP material could not achieve the desired high strength during the post-FSP heat treatment without grain coarsening, whereas the micro-grained FSP materials could reach such strength levels (>560 MPa) under conventional age hardening heat treatment conditions.  相似文献   

5.
Abstract

Friction stir processing was carried out on commercially pure aluminium, and a detailed microstructural characterisation was performed by electron backscattered diffraction and transmission electron microscopy. Friction stir processing resulted in significant grain refinement with narrow grain size distribution. The microstructure showed fine and equiaxed grains, with some ultrafine grains being also observed. Electron backscattered diffraction studies showed majority of the boundaries to be high angle, confirming the occurrence of dynamic recrystallisation (DRX). Transmission electron microscopy observations revealed dislocation arrangement into subgrain boundaries, grains having different dislocation densities and in different stages/degrees of recovery. Electron backscattered diffraction analysis also revealed a progressive transformation of sub-grain boundaries into high angle grain boundaries. A multimechanism of dynamic recovery, continuous DRX and discontinuous DRX seems to be operating during the process. The microstructure is not affected by changing the rotation speed from 640 to 800 rev min?1, except that the grain size was marginally larger for higher rotational speed.  相似文献   

6.
Series of welds were made by friction stir welding (FSW) with various backplates made out of materials ranging from low diffusivity granite to high diffusivity copper in order to reveal the effect of backplate diffusivity on the joint microstructure and properties. The temperature, microstructure, microhardness and tensile properties of joints were compared and discussed. Results show that the backplate with high diffusivity effectively decreases the heat input to the workpiece during FSW. With decreasing the backplate diffusivity the sizes of equiaxed recrystallized grains in the nugget zone increase obviously, while the hardness of the nugget zone also increases a little. The interface between the thermo-mechanically affected zone and nugget zone at the retreating side disappears under the granite backplate. Moreover, the ductility of the joint is more excellent under the copper backplate, but under the granite backplate the failure has mixed fracture characteristics of quasi-cleavage and dimples.  相似文献   

7.
Twin-roll cast (TRC) Al-Mg-Sc alloy was friction stir processed (FSP) to obtain ultrafine grained (UFG) microstructure. Average grain size of TRC alloy in as-received (AR) condition was 19.0 ± 27.2 μm. The grain size reduced to 0.73 ± 0.44 μm after FSP. About 80% of the grains were smaller than 1 μm in FSP condition. FSP resulted into 80% of the grain boundaries to have high angle grain boundary (HAGBs) character. Uniaxial tensile testing of UFG alloy showed an increase in yield strength (YS) and ultimate tensile strength (UTS) (by ∼100 MPa each) of the alloy with a very marginal decrease in total and uniform elongation (total - 27% in AR and 24% in UFG and uniform - 19% in AR and 14% in UFG). A theoretical model predicted that the grain refinement cannot take place via discontinuous dynamic recrystallization. Zener pinning model correctly predicted the grain size distribution for UFG alloy. From work hardening behaviors in both the conditions, it was concluded that grain boundary spacing is more important than the character of grain boundaries for influencing extent of uniform deformation of an alloy.  相似文献   

8.
9.
Friction stir welding is a relatively new solid-state joining technique which is widely adopted in different industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a highly complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints and their three dimensional nature make it difficult to develop an overall system of governing equations for theoretical analyzing the behavior of the friction stir welded joints. The experiments are often time consuming and costly. To overcome these problems, numerical analysis has frequently been used since the 2000s. This paper reviews the latest developments in the numerical analysis of friction stir welding processes, microstructures of friction stir welded joints and the properties of friction stir welded structures. Some important numerical issues such as materials flow modeling, meshing procedure and failure criteria are discussed. Numerical analysis of friction stir welding will allow many different welding processes to be simulated in order to understand the effects of changes in different system parameters before physical testing, which would be time-consuming or prohibitively expensive in practice. The main methods used in numerical analysis of friction stir welding are discussed and illustrated with brief case studies. In addition, several important key problems and issues remain to be addressed about the numerical analysis of friction stir welding and opportunities for further research are identified.  相似文献   

10.
Dissimilar fusion welding of austenitic stainless steels to carbon steels has some metallurgical and technical problems.It was suggested that the solid-state nature of friction stir welding(FSW) can overcome these problems and produce a sound weld with reliable mechanical properties.In this study,plates of 304 stainless steel and st37 steel were welded together by FSW at tool rotational speed of 600 r/min and welding speed of 50 mm/min.In the stir zone(SZ) of 304 stainless steel,the results showed a refined grain structure with some features of metadynamic recrystallization.In the SZ of st37 steel,the hot deformation of material in the austenite region produced small austenite grains.These grains transformed to fine ferrite and pearlite by cooling the material after FSW.The production of fine grains increased the hardness and tensile strength in the SZ of both sides with respect to their base metals(BMs).  相似文献   

11.
A notable effect of the retained heat after the fiction stir welding (FSW) of Cu was studied by the application of additional liquid CO2 cooling. The adjustment of the welding parameters made it possible to conduct the FSW processes, but the cooling rate of the joint was not sufficiently changed due to the existence of the post-annealing effect. However, the accelerated cooling can reduce the post-annealing effect and provide an ultrafine grain structure with a high dislocation density in the stir zone, and a joint with mechanical properties better than the base metal level was achieved.  相似文献   

12.
Particle-reinforced aluminum matrix composites were produced from powder mixtures of aluminum and silicon by using multiple passages of friction stir processing (FSP). In the composites, the Si particles with an average size of ∼1.5 μm are uniformly dispersed in the aluminum matrix which has a fine-grained structure (∼2 μm). The strengthening mechanism of the composites is discussed. It indicates that the fine grain size of aluminum, the Orowan strengthening due to intragranular particles and the dislocations generated by thermal mismatch all contribute significantly to the composite yield strength.  相似文献   

13.
《材料科学技术学报》2019,35(7):1261-1269
High depth-to-width ratio friction stir welding is an attractive method for the joining demands of aluminum profiles, which is sparked with its extremely low heat input and high mechanical performance. In this study, the joint formation mechanism was studied by a numerical model of plastic flow combined with experimental approaches. A fluid-solid-interaction algorithm was proposed to establish the coupling model, and the material to be welded was treated as non-Newtonian fluid. The thread structure and the milling facets on tool pin promoted drastic turbulence of material. The thread structure converged the plasticized material by its inclined plane, and then drove the attached material to refill the welds. The milling facets brought about the periodic dynamic material flow. The thread structure and the milling facets increased the strain rate greatly under the extremely low heat input, which avoided the welding defects. The condition of the peak temperature of 648 K and the strain rate of 151 s−1 attributed to the lowest coarsening degree of precipitate. The tensile strength of the joint reached 265 MPa, equivalent to 86% of base material. The amelioration via the material flow model inhibits the welding defects and optimizes the parameter intervals, providing references to extracting process-structure-property linkages for friction stir welding.  相似文献   

14.
Development of new, advanced high and ultra-high strength bainitic steels requires the selection of the optimum balance of bainite promoting elements allowing the production of the desired bainitic microstructure over a wide range of cooling rates. The addition of boron or a combined addition of boron and niobium is well known to retard strongly the polygonal ferrite formation but very little knowledge has been acquired on the bainitic transformation. Therefore, the purpose of this study is to investigate the influence of boron and boron plus niobium on the bainite transformation kinetics, microstructural evolution and mechanical properties in a low carbon steel (Fe-0.05C-1.49Mn-0.30Si). Isothermal and continuous cooling transformation diagrams were determined and followed by a detailed quantitative characterisation of the bainite microstructure and morphology using complementary advanced metallographic techniques (FEG-SEM-EBSD, SIMS and TEM). The relationship between microstructure and hardness has been evaluated. Finally, results of SIMS and TEM analyses coupled with microstructural investigations enable to propose a mechanism to explain the effect of the synergy between boron and niobium on the bainitic transformation and the resultant microstructure.  相似文献   

15.
The current study aims to show for the first time the ability of friction stir processing (FSP) in incorporating yttria particles into copper to produce an oxide dispersion strengthened material. The microstructure of the as-developed composites was characterized at various scales by light microscopy, electron probe microanalysis (EPMA) and scanning and transmission electron microscopy. The powder was found to be distributed in the Cu matrix as confirmed at various length scales from the micrometric to the nanometric level. The increase of the number of FSP passes leads to a more homogeneous and finer distribution of the particles as it favored the dissociation of the clusters of initial powder particles and the intergranular fracture of individual elemental particles. Transmission electron microscopy observations reveal that the constitutive crystallites of the initial powder, typically 10 nm in size, are frequently dissociated and dispersed into the copper matrix. In spite of their very low volume fraction, these 10 nm sized fragments which present the highest density among the various size classes of particles, exert a strengthening and work hardening effect.  相似文献   

16.
High-quality, defect-free welds were successfully produced in 409 ferritic stainless steel by friction stir welding. A remarkably fine-grained microstructure was observed in the stir zone, and the fraction of low angle grain boundary in the stir zone significantly increased as compared to that in the base material. An increase in plunging depth led to an increase of the fraction of low angle grain boundary, a decrease in grain size, and an increase in hardness in the stir zone.  相似文献   

17.
Four different tools with the pin eccentricity of 0.1 mm, 0.2 mm, 0.3 mm and 0.4 mm were designed to friction stir weld 10 mm thick AA7075-O plate. The effect of pin eccentricity on microstructure, secondary phase particles transformation and mechanical properties of the joints was investigated. The results show that the nugget area (ANZ) increases firstly and then decreases with increasing the pin eccentricity. When the pin with 0.2 mm eccentricity is applied, the ANZ is the largest; meanwhile the grains size is the smallest which is about 3 μm and secondary phase particles are the most dispersive in nugget zone compared with other tools. While the grains are coarsened to 7–11 μm as the eccentricity is more than 0.4 mm, some coarse hardening particles get to cluster in the thermo-mechanically affected zone. The joints produced by the pin with 0.2 mm eccentricity perform the highest tensile strength and elongation, which is attributed to better interfaces, finer grains and more dispersive secondary phase particles.  相似文献   

18.
Stir casted LM25AA-5% SiC Metal Matrix Composites (MMCs) consists of cast product dendrites and large agglomerated reinforced particle. The agglomeration of SiC creates difference in properties along the composite system. During loading it creates different stress field which causes failures in the composite material. Friction Stir Processing (FSP) is a novel processing technique facilitate by the frictional heat generation between the tool and the workpiece. FSP can triumph over the poor properties due to large sized and unevenly distributed SiC particle in the Al matrix. In this investigation, five different shoulder diameters to pin diameter (D/d) ratio is used for processing the composite material. Tensile properties and hardness of the friction stir processed material were evaluated and correlated with the macro and microstructure signatures. The characterization of processed composite material is carried out using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX) and X-ray diffraction technique (XRD). The effect of different D/d ratio (2, 2.5, 3, 3.5, 4) on microstructural formation, particle size and distribution in the matrix were analysed and found that the D/d ratio of 3 yielded higher tensile and hardness properties.  相似文献   

19.
Stationary shoulder friction stir welding is a newly developed technique currently used for joining plates of relatively soft metals at different angular planes. The process is not currently applicable to steel, hence the present study was developed to investigate the theoretical and technical viability of stationary shoulder technology in DH36 steel. Aluminium welds were produced using both conventional rotating shoulder and stationary shoulder friction stir welding techniques, and steel welds were produced using only conventional friction stir welding techniques. The effects of stationary shoulder technology on both the microstructural evolution and resultant mechanical properties of aluminium have been evaluated so that the likely effects on steel could be predicted. In the aluminium welds, the stationary shoulder technique results in a distinct transition between stirred and unstirred material, contrasting to the gradual change typically seen in conventional friction stir welds produced with a rotating shoulder. An investigation of weld properties produced in DH36 steel has demonstrated that if the stationary shoulder weld technique was used, the microstructure likely to be formed, would be dominated by a bainitic ferrite phase and so would exhibit hardness and tensile properties in excess of the parent material. It is predicted that if the same abrupt transition between unstirred and stirred material observed in aluminium occurred in steel, this would lead to crack initiation, followed by rapid propagation through the relatively brittle weld microstructure. Hence, these findings demonstrate that without further design and process improvements, stationary shoulder friction stir welding is unlikely to be applicable to steel.  相似文献   

20.
A major dilemma faced in the nuclear industry is repair of stainless steel reactor components that have been exposed to neutron irradiation. When conventional fusion welding is used for repair, intergranular cracks develop in the heat-affected zone(HAZ). Friction stir processing(FSP), which operates at much lower peak temperatures than fusion welding, was studied as a crack repair method for irradiated 304 L stainless steel. A numerical simulation of the FSP process in 304 L was developed to predict temperatures and recrystallized grain size in the stir zone. The model employed an Eulerian finite element approach,where flow stresses for a large range of strain rates and temperatures inherent in FSP were used as input. Temperature predictions in three locations near the stir zone were accurate to within 4%, while prediction of welding power was accurate to within 5% of experimental measurements. The predicted recrystallized grain sizes ranged from 7.6 to 10.6 μm, while the experimentally measured grains sizes in the same locations ranged from 6.0 to 7.6 μm. The maximum error in predicted recrystallized grain size was about 39%, but the associated stir zone hardness from the predicted grain sizes was only different from the experiment by about 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号