首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A preparation process of 2-methylnaphthalene (2-MN) was proposed by isomerization, side-stream distillation and extractive distillation. The isomerization of alkyl naphthalene was catalyzed by acid-treated HBEA zeolites, and the 2-MN selectivity of isomerization was 92.70%. Side-stream distillation and extractive distillation were investigated by simulation, and effects of operation parameters on 2-MN were studied. Further, the simulated results were verified by experiment. Under the optimal condition, the mass fraction of 2-MN reached to 98.09%in the product, and the yield was 83.84%in refining process.  相似文献   

2.
The purpose of this article is to demonstrate the applicability of microreactors for use in catalytic reactions at elevated temperatures. Microchannels were fabricated on both sides of a silicon wafer by wet chemical etching after pattern transfer using a negative photoresist. The walls of the reactor channel were coated with a platinum layer, for use as a sample catalyst, by sputtering. A heating element was installed in the channel on the opposite surface of the reactor channel. The reactor channel was sealed gas-tight with a glass plate by using an anodic bonding technique. A small-scale palladium membrane was also prepared on the surface of a 50-Μm thick copper film. In the membrane preparation, a negative photoresist was spin-coated and solidified to serve as a protective film. A palladium layer was then electrodeposited on the other uncovered surface. After the protective film was removed, the resist was again spin-coated on the copper surface, and a pattern of microslits was transferred by photolithography. After development, the microslits were electrolitically etched away, resulting in the formation of a palladium membrane as an assemblage of thin layers formed in the microslits. The integration of the microreactor and the membrane is currently under way.  相似文献   

3.
Alkylations of 1-and 2-methylnaphthalene with long-chain alkenes in different alkyl-containing amine ionic liquids were investigated at room temperature. The effects of both anions and cations of ionic liquids on the alkylations were studied in detail. Results show that the anions determine, to a large extent, the physical and chemical properties of ionic liquids, but organic cations mainly influence physical properties, and have only a little impact on the catalytic performance. High conversion of alkylating agent and excellent selectivity for the desired products were obtained. The products and unreacted reactants were easily isolated from catalysis systems by extraction with cyclohexane. Thanks to the less expensive reagents and the easier synthesis process, methyl and ethylamine chloroaluminate ionic liquids could become novel practical catalysts for long-chain alkylation of methylnaphthalene with alkenes.  相似文献   

4.
Shape-selective methylation of 2-methylnaphthalene (2-MN) was carried out over hydrothermally treated HZSM-5 (SiO2/Al2O3=83) zeolite catalysts under a fixed-bed down-flow reactor, methanol and 1,3,5-trimethylbenzene (TMB) were used as methylating agent and solvent, respectively. The results show that hydrothermal treatment improves the selectivity to 2,6-dimethylnaphthalene (2,6-DMN) and the stability. HZSM-5 catalyst hydrothermally treated at 550 °C followed by acid leaching exhibits 7.1% of 2,6-DMN yield after 5 h time on stream (TOS), and 13.4% of 2-MN conversion with the 2,6-/2,7-DMN ratio of 1.8 after 8 h of TOS.  相似文献   

5.
The Lewis acid-catalyzed addition of trimethylsilyl cyanide to p-chlorobenzaldehyde in a microchannel reactor was investigated. The microchannel was integrated to promote both reaction and separation of the biphase system. FeF3 and Cu(triflate)2 were used as water-stable Lewis acid catalysts. Sodium dodecyl sulfate was incorporated in the organic-aqueous system to enhance the reactivity and to manipulate the multiphase flow inside the microchannel. It was found that the dynamics and the kinetics of the multiphase reaction were affected by the new micellar system. Parallel multiphase flow inside the microchannel was obtained, allowing for continuous and acceptable phase separation. Enhanced selectivity was achieved by operating at lower conversion values.  相似文献   

6.
Xiaoze Du  Shaorong Wu 《Desalination》2005,174(3):315-323
In order to understand the performance of a large-capacity VTE-MED nuclear seawater desalination system thoroughly, the responding characteristics of the system to the off-design operating conditions were studied. The influence of scale deposit in tubes on the heat transfer areas needed and on the heat transfer coefficients with high top boiling temperature (TBT) was illustrated. The decrease of GOR, and also the damage to the normal operation of the system caused by temperature drop of feed brine because of seasonal variation, were explored, based on which a corresponding approach for adjusting feed brine flow rate was proposed. An optimal brine feed flow rate was also proposed to obtain the highest GOR under different heat loadings. The work could be helpful for the efficient and safe operation of nuclear VTE-MED desalination plants.  相似文献   

7.
In this work, nano-CaCO3 particles with tunable size have been synthesized via CO2/Ca(OH)2 precipitation reaction in a microporous tube-in-tube microchannel reactor (MTMCR) with a throughput capacity up to 400 L/h for CO2 and 76.14 L/h for liquid. The overall volumetric mass-transfer coefficient (KLa) of CO2 absorption into Ca(OH)2 slurry in the MTMCR has been deduced and analyzed. To control the particle size, the effect of operating conditions including initial Ca(OH)2 content, gas volumetric flow rate, liquid volumetric flow rate, micropore size, and annular channel width was investigated. The results indicated that the mass transfer in the MTMCR can be greatly enhanced in contrast with a stirred tank reactor, and the particle size can be well controlled by tuning the operating parameters. The nano-CaCO3 particles with an average size of 28 nm and a calcite crystal structure were synthesized, indicating that this process is promising for mass production of nanoparticles.  相似文献   

8.
Fischer‐Tropsch synthesis (FTS) involves highly exothermic conversion of syngas to a wide range of hydrocarbons, but demands isothermal conditions due to the strong dependence of product distribution on temperature. Running FTS in microchannel reactors is promising, as the sub‐millimeter dimensions can lead to significant intensification that inherently favors robust temperature control. This study involves computer‐based FTS simulations in a heat‐exchange integrated microchannel network composed of horizontal groups of square‐shaped cooling and wall‐coated, catalytic reaction channels. Effects of material type and thickness of the wall separating the channels, side length of the cooling channel, coolant flow rate, and channel wall texture on reaction temperature are investigated. Use of thicker walls with high thermal conductivities and micro‐baffles on the catalytic reaction channel wall favor near‐isothermal conditions. Response of reaction temperature against coolant flow rate is significant. Using cooling channels with smaller side lengths, however, is shown to be insufficient for temperature control. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

9.
Super-monodispersed oil-in-water (O/W) microspheres (MS) were produced using a microchannel (MC) emulsification technique. To investigate the effect of the surfactant on the behavior of the O/W-MS formation, the MS size and its distribution, various surfactants were used for the MC emulsification process. An MC plate with 8.9 μm equivalent diameter was employed. It was found that the super-monodispersed O/W-MS production depends on the type of surfactant used. When nonionic and anionic surfactants were used, supermonodispersed O/W-MS were produced, and the average droplet diameter was about 30 μm with a standard deviation less than 1 μm. For cationic surfactants, the super-monodispersed O/W-MS production was not successful, especially for the case where hydrophobic surfactant was dissolved in the oil phase. The results indicated that it is very important to maintain the hydrophilicity of the MC surface during the MC emulsification process. It is considered that the hydrophilic group of the anionic and nonionic surfactant was repulsed from the negatively charged MC surface so that the hydrophilicity of the MC surface was maintained. Otherwise, adsorption of the positively charged group of the cationic surfactant occurred on the MC surface which improved wetting of the MC surface and deteriorated the MC emulsification process. The analysis was supported by contact angle measurement.  相似文献   

10.
The partial oxidation of ethene to ethene oxide using explosive binary C2H4/O2-mixtures was performed in a microchannel reactor using a silver-coated aluminum microstructure as catalyst. High C2H4 concentrations were selectively oxidized in an oxygen atmosphere at elevated pressures. It showed that a Cs treatment as well as the application NO2 allowed selectivities of 70% or higher without use of gaseous chlorine promoters.  相似文献   

11.
A multiphase flow 3D numerical simulation method employing the coupled volume of fluid (VOF) and level set model is established to study the reactive absorption of CO2 by the monoethanolamine (MEA) aqueous solution in a falling film microchannel. Based on the flow-reaction-mass transfer model of the MEA-CO2 system in the falling film microchannel, the enhancement effect of the Marangoni convection in this reactive absorption process is analyzed. The enhancement factor of the Marangoni convection obtained in this work is in good agreement with experimental results in the literature. With consideration of the absorption ratio as well as the enhancement effect of the Marangoni convection, the influence of different MEA concentrations on absorption of CO2 is investigated. Furthermore, the appropriate MEA concentration for absorption enhanced by the Marangoni convection is acquired.  相似文献   

12.
传统的间歇反应合成存在温度不易控制、生产能力低、时间长等一系列问题,而微通道反应器可大幅度提高反应过程中的资源和能量的利用效率,减小过程系统的体积或提高单位体积的生产能力,实现化工过程强化、微型化和绿色化。本工作以双乙烯酮与甲醇为原料,探究在变径脉冲结构的微通道反应器中合成乙酰乙酸甲酯新方法。对催化剂类型、物料配比、停留时间、反应温度及催化剂用量进行了考察分析,最佳条件组合结果显示,当催化剂选择甲醇钠,且双乙烯酮:甲醇:甲醇钠=1:1.1:0.02(摩尔比),反应温度为90℃,停留时间为90 s时,双乙烯酮的转化率达100%,乙酰乙酸甲酯的选择性达96.8%,用此方法可以直接体现微通道反应器连续流合成的优势。  相似文献   

13.
Gorazd Ber i 《Catalysis Today》2001,69(1-4):147-152
The catalytic hydrogenation of nitrobenzoic acid (NBA) to the aminobenzoic acid was used as a model reaction for a quantitative study of influences of the operating conditions on the observed reaction rate in a single channel monolith reactor operated in Taylor flow regime. A simple mathematical model was derived and used for the analysis of hydrogenation experiments carried out in batch mode. Results showed that in the investigated concentration range of NBA, i.e. 0.0005–0.02 mol/l and under the hydrogen pressure of 1 bar, the observed reaction rate is considerably limited by mass transport. At higher concentrations of NBA, the reaction is controlled by the hydrogen mass transport while at lower concentrations the mass transport of NBA is dominant. The analysis of experimental results, which were obtained when the length of gas bubbles and liquid slugs were varied, showed that the reaction took place in the thin liquid film surrounding the gas bubble. The liquid slug serves as exchanger of reactants and reaction products between bulk liquid slug and liquid film surrounding the catalyst surface.  相似文献   

14.
A recycling fluidises-bed Immobilised enzyme reactor for the hydrolysis of ricebran oil employing an inexpensive Nylon-6 matrix as the immobilisation carrier is described. The catalyst has high initial activity and excellent long term stability. The tractor design exploits the fact that fluidisation permits the use of small catalyst particles, so overcoming the yield-limiting diffusion-associated problems encountered in the case of conventional fixed-bed reactors. The conventional fluidised-bed reactor did not plugging and high pressure drop problems typical of fixed-bed reactors. Conversion yields of 72% were achieved in the reactor, which generally showed superior performance to that of a fixed-bed design.  相似文献   

15.
2-甲基-6-叔丁基苯酚的合成   总被引:1,自引:0,他引:1  
以邻甲酚和异丁烯为主要原料,合成2-甲基-6-叔丁基苯酚。考察了反应温度、反应时间和催化剂用量等因素对合成反应的影响。结果表明,合成2-甲基-6-叔丁基苯酚的最佳工艺条件为:常压下,催化剂用量为0.3%(以邻甲酚质量份计),反应温度为110℃,反应时间为3.5h。  相似文献   

16.
王娟  毛羽  刘艳升  曹睿 《化学工程》2006,34(4):28-31
采用k-ε二方程模型和欧拉多相流模型,对一种气升式环流反应器内的湍流气液二相流进行了全尺寸的数值模拟研究,考察了采用具有不同大小分布孔气体分布器时反应器内气含率和流速分布的细节。模拟结果表明采用小分布孔的反应器内的平均气含率较高,气液二相接触效果较好,对于反应过程有利。计算所得的整体气含率与实测的整体气含率进行了对比,吻合较好。  相似文献   

17.
An experimental visualization study is conducted to investigate the hydrodynamic characteristics of emulsion droplet formation in a coflowing microchannel. Both monodisperse and polydisperse patterns of drop formation are observed, including dripping regime, jetting regime (widening jetting and narrowing jetting). Especially, two dripping-to-jetting transition regimes and wavy regime with no individual droplet produced are captured and analyzed. A corresponding phase diagram is provided to characterize the transitions between different emulsification patterns through the control of flow rate of continuous phase. In addition, the dependence of generated droplet size on the Capillary number of the continuous phase (Ca) and the Weber number of the dispersed phase (We) is presented. It is indicated that, when Ca is below 3, the generated droplet size is sensitive to the viscous force and the drop formation regime is widening jetting and dripping. However, when Ca exceeds 3, the generated droplet size is approximately independent of Ca, and the droplet formation regime is thinning jetting.  相似文献   

18.
19.
The condensation flow of the refrigerant FC-72 in a rectangular microchannel with a 1-mm hydraulic diameter is numerically studied using the volume of fluid (VOF) model. The heat transfer related to the condensation is taken into account by a thermal equilibrium model assuming the interface temperature is at saturation. The numerical method is validated against experiments from the literature and well predicts the flow patterns along the microchannel. The vapor phase in the microchannel forms a continuous column with a decreasing diameter from upstream to downstream. Slugs are periodically generated at the head of the column. Decreasing the wall cooling heat flux or increasing the flow mass flux increases the vapor column length. Waves along the interface cause necks in the column and locally increase the vapor velocity and decrease the pressure, facilitating breakage of the vapor column into slugs. The liquid temperature is close to saturation near the interface and lower downstream and in the thin liquid layer close to the cooling surface. The initial bubble size increases with increasing flow mass flux or decreasing cooling heat flux.  相似文献   

20.
The effect of recycling the unconverted bottom on catalyst deactivation as a way to improve the hydrocracking conversion of heavy oil was analyzed using the experimental information obtained in a steady-state ebullated bed reactor. The recycle contained different amounts of partially converted (aged) material. Four sets of experiments were performed to demonstrate that after five passes through the reactor, the reactivity of the unconverted material decreased by 15% and its impact on catalyst deactivation increased by 30%. The results indicated that the higher the conversion, the lower is the reactivity and the higher is the catalyst deactivation. The production of an insoluble and refractory to convert material imposes a limit on the recycling benefit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号