共查询到20条相似文献,搜索用时 15 毫秒
1.
The investigation was undertaken to evaluate the effectiveness of using activated carbon (AC) in conjunction with ultrafiltration (UF) in the removal of methylene blue (MB) from aqueous solutions. The combination of activated carbon with UF in this work was to exploit the high adsorption capabilities of AC and the particle removal ability of UF simultaneously. The process was experimentally investigated using granulated and commercial powder-activated carbons. Experiments were conducted in order to study the effects of carbon type, carbon dose, and operating pressure on the process performance. The results obtained showed that the combined process achieved better rejection of dye than the OF process. Furthermore, powder-activated carbons were more effective than the granulated type. 相似文献
2.
Ali H.Jawad Ahmed Saud Abdulhameed Lee D.Wilson Syed Shatir A.Syed-Hassan Zeid A.ALOthman Mohammad Rizwan Khan 《中国化学工程学报》2021,32(4):281-290
In tnis study,an alternative precursor for production of activated carbon was introduced using dragon fruit(Hylocereus costaricensis) peel(DFP).Moreover,KOH was used as a chemical activator in the thermal carbonization process to convert DFP into activated carbon(DFPAC).In order to accomplish this research,several approaches were employed to examine the elemental composition,surface properties,amorphous and crystalline nature,essential active group,and surface morphology of the DFPAC.The Brunauer-Emmett-Teller test demonstrated a mesoporous structure of the DFPAC has a high surface area of 756.3 m~2·g~(-1).The cationic dye Methylene Blue(MB) was used as a probe to assess the efficiency of DFPAC towards the removal of MB dye from aqueous solution.The effects of adsorption input factors(e.g.DFPAC dose(A:0.04-0.12 g·L~(-1)), pH(B:3-10),and temperature(C:30-50℃)) were investigated and optimized using statistical analysis(i.e.Box-Behnken design(BBD)).The adsorption kinetic model can be best categorized as the pseudo-first order(PFO).Whereas,the adsorption isotherm model can be best described by Langmuir model,with maximum adsorption capacity of DFPAC for MB dye was 195.2 mg·g~(-1) at 50℃.The adsorption mechanism of MB by DFPAC surface was attributed to the electrostatic interaction,π-π interaction,and H-bonding.Finally,the results support the ability of DFP to be a promising precursor for production of highly porous activated carbon suitable for removal of cationic dyes(e.g.MB). 相似文献
3.
Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution 总被引:1,自引:0,他引:1
The effect of zinc oxide loading to granular activated carbon on Pb(II) adsorption from aqueous solution was studied in comparison with zinc oxide particles and oxidized activated carbon. Cu(II), Cd(II) and nitrobenzene were used as reference adsorbates to investigate the adsorption. The BET surface area and point of zero charge (pHPZC) in the aqueous solution were measured for the adsorbents. The adsorption isotherms were examined to characterize the adsorption of heavy metals and organic molecules. The heavy metal adsorption was improved by both the zinc oxide loading and the oxidation of activated carbon. In contrast, the adsorption of nitrobenzene was considerably reduced by the oxidation, and slightly decreased by the zinc oxide loading. The zinc oxide loading to the activated carbon was found to be effectively used for the Pb(II) adsorption whereas only a part of surface functional groups was used for the zinc oxide particles and the oxidized activated carbon. From the experimental results, the surface functional groups responsible for the Pb(II) adsorption on the zinc oxide loaded activated carbon were considered to be hydroxyl groups that formed on the oxide, while those on the oxidized activated carbon were considered to be carboxylic groups. 相似文献
4.
Caroline Maria Bezerra de Araujo Gabriel Filipe Oliveira do Nascimento Gabriel Rodrigues Bezerra da Costa Karolyne Santos da Silva Ana Maria Salgueiro Baptisttella Marcos Gomes Ghislandi 《Chemical Engineering Communications》2019,206(11):1375-1387
AbstractThis work focused on producing different graphene oxide (GO) samples for further application in the adsorptive removal of dyes from real textile wastewater. Among all conditions tested, the sample produced using KMnO4 and no sonication bath exhibited the best performance. Before the experiments using wastewater, kinetics and equilibrium of adsorption studies were performed with Methylene Blue (MB) dye. Experimental data showed the isotherm fitted the Freundlich model, and kinetic results fitted the pseudo-second order model. Theoretical qmax was 308.11?mg.g?1 and over 90% removal of MB was reached in approximately 5?min. Although GO has been widely applied to remove cationic and anionic dyes from water, not many studies have presented GO as an adsorbent for real textile wastewater treatment. In 30?min, GO removed nearly 85% of turbidity and over 60% of color from a real sample, indicating that GO might be an excellent alternative to treat textile wastewater. 相似文献
5.
Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: adsorption competition with organic matter 总被引:2,自引:0,他引:2
Activated carbon cloths are recent adsorbents whose adsorption properties are well known for monocomponent solutions of organics or metal ions. However, to treat wastewaters with these materials, their performance has to be determined in multicomponent solution. This work studies adsorption competition between metal ions (Cu2+, Pb2+) and organic matter (benzoic acid). The first part investigates adsorption equilibrium of monocomponent metal ions solutions and shows the dependence of adsorption capacities on adsorbent porosity and metal ions chemical properties (molecular weight, ionic radius and electronegativity). The influence of pH is also demonstrated. The second part focuses on adsorption competition: (1) between both metal ions (a decrease of adsorption capacities is observed, whose value is related to adsorption kinetics of metal ions); (2) between metal ions and organic matter, in solution or adsorbed onto the activated carbon cloth (a strong influence of pH is shown: when benzoic acid is under benzoate form, in both cases adsorption is increased due to the formation of ligands between adsorbed benzoate ions and metals). 相似文献
6.
Malaysian Selantik low-rank coal (SC) was used as a precursor to prepare a form of mesoporous activated carbon (SC-AC) with greater surface area (SA) via a microwave induced KOH-activation method. The characteristics of the SC and SC-AC were evaluated by the iodine number, ash content, bulk density, and moisture content. The structure and surface characterization was carried out using pore structure analysis (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), elemental analysis (CHNS), thermogravimetric analysis (TGA), and determination of the point of zero charge (pHPZC). These results signify a mesoporous structure of SC-AC with an increase of ca. 1160 times (BET SA=1094.3 m2·g-1) as compared with raw SC without activation (BET SA=1.23 m2·g-1). The adsorptive properties of the SC-AC with methylene blue (MB) was carried out at variable adsorbent dose (0.2-1.6 g·L-1), solution pH (2-12), initial MB concentrations (25-400 mg·L-1), and contact time (0-290 min) using batch mode operation. The kinetic profiles follow pseudo-second order kinetics and the equilibrium uptake of MB conforms to the Langmuir model with a maximum monolayer adsorption capacity of 491.7 mg·g-1 at 303 K. Thermodynamic functions revealed a spontaneous endothermic adsorption process. The mechanism of adsorption included mainly electrostatic attractions, hydrogen bonding interaction, and π-π stacking interaction. This work shows that Malaysian Selantik low-rank coal is a promising precursor for the production of low-cost and efficient mesoporous activated carbon with substantive surface area. 相似文献
7.
8.
Batch sorption experiments were carried out to remove a cationic dye, methylene blue (MB), from its aqueous solutions using a commercial activated carbon as an adsorbent. Operating variables studied were pH, stirring speed, initial methylene blue concentration and temperature. Adsorption process was attained to the equilibrium within 5 min. The adsorbed amount MB dye on activated carbon slightly changed with increasing pH, and temperature, indicating an endothermic process. The adsorption capacity of methylene blue did not significantly change with increasing stirring speed. The experimental data were analyzed by various isotherm models, and found that the isotherm data were reasonably well correlated by Langmuir isotherm. Adsorption measurements showed that the process was very fast and physical in nature. Thermodynamic parameters such as the adsorption entropy (ΔSo) and adsorption enthalpy (ΔHo) were also calculated as 0.165 kJ mol−1 K−1 and 49.195 kJ mol−1, respectively. The ΔGo values varied in range with the mean values showing a gradual increase from −0.256 to −0.780 to −2.764 and −7.914 kJ mol−1 for 293, 313, 323 and 333 K, respectively, in accordance with the positive adsorption entropy value of the adsorption process. 相似文献
9.
《Journal of Industrial and Engineering Chemistry》2014,20(6):4401-4407
The present study reports the preparation of an activated carbon produced from buriti shells (ACb) using ZnCl2 as activating agent and its ability to remove methylene blue dye (MB) from aqueous solutions. The obtained ACb was characterized by N2 adsorption–desorption isotherms, SEM and FT-IR. The results show that ACb presents microporous features with BET surface area (SBET) of 843 m2 g−1 and functional groups common in carbonaceous materials. Adsorption studies were carried out and experimental data were fitted to three isotherm models (Langmuir, Freundlich, and Redlich–Peterson) and four kinetic models (pseudo-first order, pseudo-second order, Elovich, and intraparticle diffusion). The isotherm model which best fitted to experimental data was Redlich–Peterson. However, the g parameter of this model indicated that the adsorption of MB onto ACb occurs according to the mechanism proposed by Langmuir, which showed maximum monolayer adsorption capacity of 274.62 mg g−1. Kinetic studies demonstrated that the Elovich model is suitable to describe the experimental data. Moreover, it was found that the intraparticle diffusion is the limiting step of adsorption process. 相似文献
10.
Kinetics of adsorption on activated carbon: application of heterogeneous vacancy solution theory 总被引:1,自引:0,他引:1
The kinetics of single component adsorption on activated carbon is investigated here using a heterogeneous vacancy solution theory (VST) of adsorption. The adsorption isotherm is developed to account for the adsorbate non-ideality due to the size difference between the adsorbate molecule and the vacant site, while incorporating adsorbent heterogeneity through a pore-width-related potential energy. The transport process in the bidisperse carbon considers coupled mass transfer in both macropore and micropore phases simultaneously. Adsorbate diffusion in the micropore network is modeled through effective medium theory, thus considering pore network connectivity in the adsorbent, with the activation energy for adsorbate diffusion related to the adsorption energy, represented by the Steele 10-4-3 potential for carbons. Experimental data of five hydrocarbons, CO2 and SO2 on Ajax carbon at multiple temperatures, as well as three hydrocarbons on Norit carbon at three temperatures are first fitted by the heterogeneous VST model to obtain the isotherm parameters, followed by application of the kinetic model to uptake data on carbon particles of different sizes and geometry at various temperatures. For the hydrocarbons studied, the model can successfully correlate the experimental data for both adsorption equilibrium and kinetics. However, there is some deviation in the fit of the desorption kinetics for polar compounds such as CO2 and SO2, due to the inadequacy of the L-J potential model in this case. The significance of viscous transport in the micropores is also considered here and found to be negligible, consistent with recent molecular simulation studies. 相似文献
11.
Adsorption isotherms for activated carbon made from pecan shells have been obtained at 25 °C and an approximate pH of 3 for a number of metal ion solutes. It was found that the Slips and Freundlich equations were satisfactory for explaining the experimental data. The correlation of metal ion adsorption with the solute parameters of metal ion electronegativity and first stability constant of the metal hydroxide was investigated. In the case of most of the metal ions studied, higher electronegativities and stability constants corresponded to the higher adsorption levels of metal ions onto the activated carbon. A correlation was developed that predicts the constants of the Freundlich equation from the selected parameters of the metal ions, and thus can predict the adsorption isotherms at constant pH. The developed correlation gives results with acceptable deviations from experimental data. A procedure is proposed for obtaining similar correlations for different conditions (temperature, pH, carbon type and dosage). The ratio of equivalent metal ions adsorbed to protons released is calculated for the studied metal ions over a range of concentrations. In most cases, particularly at low concentrations, this ratio is close to one, confirming that ion exchange of one proton with one equivalent metal ion is the dominant reaction mechanism. 相似文献
12.
Comparative study of methylene blue dye adsorption onto activated carbon,graphene oxide,and carbon nanotubes 总被引:1,自引:0,他引:1
Yanhui Li Qiuju Du Tonghao Liu Xianjia Peng Junjie Wang Jiankun Sun Yonghao Wang Shaoling Wu Zonghua Wang Yanzhi Xia Linhua Xia 《Chemical Engineering Research and Design》2013
Three different carbonaceous materials, activated carbon, graphene oxide, and multi-walled carbon nanotubes, were modified by nitric acid and used as adsorbents for the removal of methylene blue dye from aqueous solution. The adsorbents were characterized by N2 adsorption/desorption isotherms, infrared spectroscopy, particle size, and zeta potential measurements. Batch adsorption experiments were carried out to study the effect of solution pH and contact time on dye adsorption properties. The kinetic studies showed that the adsorption data followed a pseudo second-order kinetic model. The isotherm analysis indicated that the adsorption data can be represented by Langmuir isotherm model. The remarkably strong adsorption capacity normalized by the BET surface area of graphene oxide and carbon nanotubes can be attributed to π–π electron donor acceptor interaction and electrostatic attraction. 相似文献
13.
Novel activated carbon-zeolite composite adsorbent was prepared from macadamia shell bio-waste and synthetic zeolite X using hydrothermal treatment.Characterisation studies revealed mainly mesoporous structure with 418 m~2·g~(-1) BET surface area with faujasite clusters on the carbon carrier.Sorption capacity for methylene blue model pollutant increased from 85 to 97 mg·g~(-1) with the temperature increase from 25 to 45 ℃, and improved with increasing pH.Nonlinear regression analyses found accurate fit to the pseudo-first-order kinetics model and intra-particle diffusion rate controlling mechanism.Excellent fits to the Jovanovic isotherm model indicated monolayer coverage on chiefly homotattic surfaces with variable potential.The thermodynamic analysis confirmed spontaneous and endothermic physisorption process.The spent adsorbent was regenerated with 20% capacity loss over five reuse cycles.Although the adsorbent was developed for ammonia, heavy metal and organic matter removal from water sources, the results also indicate good performance in cationic dye removal from wastewaters. 相似文献
14.
Trace zeolitic imidazolate framework-8(ZIF-8)-decorated activated carbon(AC) pellets were synthesized by a facile wet impregnation technique. After pyrolysis of the above composite material, the obtained carbon had a large surface area and pore volume, with traces of Zn on its surface. Subsequently, the capacity of the ZIF8/AC samples to adsorb and remove phenol from aqueous media was evaluated in both batch and column experimental setups. The equilibrium adsorption capacity reached 155.24 mg·g~(-1), which was 2.3 times greater than that of the pure AC(46.24 mg·g~(-1)). In addition, adsorption kinetics were examined by pseudofirst and pseudosecond order models, and adsorption isotherms were fitted into Langmuir and Freundlich equations. The adsorbent could be easily filtered from the solution and washed with methanol and water, while maintaining an efficiency N 90% after 4 cycles. The above results make it a potentially reusable candidate for water purification. 相似文献
15.
《分离科学与技术》2012,47(14):2180-2193
ABSTRACTNovel activated carbon (AC) derived from bacterial cellulose (BC-AC) was produced by phosphoric acid activation at a carbonization temperature of 500 °C. BC-AC possesses mesoporous structures of 2.3 nm in diameter, porosity of 1.0 cm3/g and surface area of 1734 m2/g with high thermal stability between 100 and 500 °C. BC-AC could be used as an effective adsorbent for removing methylene blue (MB) from aqueous solutions with the maximum adsorption capacity of 505.8 mg/g. BC-AC presented physisorption and the adsorption of MB was most likely to be a monolayer adsorption. The Redlich–Peterson model displayed the best fit with the experimental data. 相似文献
16.
Yanhe Han Xie Quan Shuo Chen Huimin Zhao Chunyue Cui Yazhi Zhao 《Separation and Purification Technology》2006,50(3):365-372
For adsorptive separation processes, the adsorption rate and capacity are two important factors affecting the costs. This study describes the anodic polarization of activated carbon fibers (ACFs), which can enhance the adsorption rate and capacity of aniline. The electrosorption kinetics and the affecting factors (bias potential, electrolyte, and pH) of isotherms for aniline on ACFs were investigated. The adsorption/electrosorption of aniline on ACFs follow pseudo-first-order adsorption kinetics, and the adsorption rate improves with increasing bias potential. The electrosorption isotherms, which exhibit a variety of responses depending on bias potential, electrolyte and pH, follow the two classical models of Langmuir and Freundlich. With electrosorption of aniline from aqueous solution, a two-fold enhancement of adsorption capacity is achievable. The initial and saturated ACFs were characterized using scanning electron micrograph (SEM) and Fourier transform infrared spectroscopy (FT-IR). The SEM micrographs show that the surface of ACFs is not oxidized, which is also verified by cyclic voltammetry results. The FT-IR spectroscopy suggests that the interaction between aniline and ACFs is main weak physisorption instead of chemisorption. These experimental results suggest that the electrochemical polarization of ACFs can effectively improve the adsorption rate and capacity of aniline, which may be due to the enhanced affinity between aniline and ACFs instead of the oxidation on the surface of ACFs or in the solution. 相似文献
17.
18.
Byoung Chul Kim Young Han Kim Takuji Yamamoto 《Korean Journal of Chemical Engineering》2008,25(5):1140-1144
Dye is difficult to remove from aqueous solution with common adsorbents due to its large molecular size. Mesoporous bamboo
activated carbon is utilized in the adsorption of Black 5, Red E and phenol. The adsorption performance of the carbon is experimentally
examined along with the characterization of the adsorbent. The comparison of adsorption capacity of the bamboo activated carbon
with that of coconut activated carbon and carbon cryogel indicates that the large volume of mesopore in the carbon helps the
expansion of adsorption capacity. Microscopic observation, the measurement of pore characteristics and fitting to the adsorption
isotherms are conducted in the characterization of the bamboo activated carbon. 相似文献
19.
Effects of high relative humidity on the dynamic adsorption of dimethyl methylphosphonate (DMMP) on activated carbon 总被引:1,自引:0,他引:1
The effects of high relative humidity (RH) on the breakthrough of the nerve agent simulant dimethyl methylphosphonate (DMMP) vapor in beds of ASC-impregnated, activated carbon were investigated. Maximum concentrations of DMMP at room temperature and RH > 60% were found to be lower by more than an order of magnitude than in dry air. The breakthrough time (tB) of 1.2 × 10−4 g l−1 DMMP in pre-humidified beds and humid air of RH = 90% was shortened by a factor of 1.6 relative to adsorption in dry beds and dry air. Analysis of the breakthrough curves according to the Wheeler–Jonas model indicated that the high RH lowered the dynamic adsorption capacity (WE) but had nearly no effect on the critical bed weight (WC). The reduction of WE by humidity correlates with the observed displacement of adsorbed water by DMMP. The use of DMMP for testing filter performance is limited to low and intermediate relative humidities. On the other hand, DMMP in dry air can be used to advantage for testing the capacity of new or used respirator filters and for the detection of filter channeling. 相似文献