首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon/carbon (C/C) composites with two different matrixes of pitch carbon and pyrolytic carbon were fabricated using 2-dimensional (2D) carbon felts preform. In order to study the effects of matrixes on mechanical properties, C/C composites with single matrix of pitch carbon were prepared. The mechanical properties were tested on CMT5304-30KN universal testing machine. Polarization microscope and scanning electron microscope were used to investigate the microstructures and fracture surface of C/C composites. It was resulted that the flexural strength of C/C composites with two matrixes was improved by 96% compared with that of C/C composites with single matrix. Meanwhile, better toughness was also obtained with two matrixes. For the composites, multilayer microstructures were generated after filling up of voids caused during carbonization of mesophase pitch by pyrolytic carbon. The multilayer microstructures were beneficial to the improvement of mechanical properties of C/C composites, especially the toughness. More energy could be dissipated during mechanical tests while cracks might extend along multiple paths, such as the interface between fiber and matrix or the interface between different matrixes.  相似文献   

2.
A simple method to increase both strength and toughness of carbon/carbon (C/C) composites is presented. This method is based on the heat treatment of the pre-deposited thin carbon coating, leading to the formation of more orderly pyrolytic carbon (PyC) as a functional interlayer between fiber and matrix that could optimize the interfacial sliding strength in C/C composites. Effects of such a heat-treated PyC layers on the microstructure, tensile strength and fracture behavior of unidirectional C/C composites were investigated. Results showed that although the in-situ fiber strength was deteriorated after the introduction of interfacial layer, tensile strength of the specimen was greatly improved by 38.5% compared with pure C/C composites without any treatment. The interfacial sliding stress sharply decreased, which was interpreted from finite element analysis and verified by Raman spectra. Therefore, the fracture behavior was changed from brittle fracture to multiple-matrix cracking induced non-linear mechanical behavior. Finally, the ultimate strength can be predicted by different models according to the interfacial sliding stress. Our research would provide a meaningful way to improve both strength and toughness of C/C composites.  相似文献   

3.
Flexural behavior of three-axis woven carbon/carbon composites   总被引:3,自引:0,他引:3  
This work examines the processing characteristics and flexural behavior of 3D woven carbon/carbon composites. Two types of the composites have been made, both having 3-axis orthogonal structures. The first combines solid rods along the axial direction. The rod, 1 mm in diameter, is composed of unidirectional carbon fibers and a phenolic resin. The second is a conventional type composed of carbon yarns in all axes. Both preforms were then impregnated by the phenolic resin. Matched molds were used to enhance fiber packing and to cure the resin under a hot press. The green composites were then heat-treated at various temperatures ranging from 200° through 1000° C. The second set of specimens was made by applying multi-cycle impregnation and carbonization. Flexural tests were carried out for these two sets of specimens. Their responses to the load and the induced damage behavior have been examined. The use of rods enhances fiber packing and reduces fiber crimp, leading to higher material performance. Decomposition of the resin due to the heat-treatment results in weak interfacial bonding and compressive failure in axial yarns. The efficiency of densification has been examined. The induced damage configurations vary significantly in these specimens, as a result of the processing. Some unique modes associated with the 3D structure are discussed.  相似文献   

4.
Additive manufacturing (AM) technologies have been successfully applied in various applications. Fused deposition modeling (FDM), one of the most popular AM techniques, is the most widely used method for fabricating thermoplastic parts those are mainly used as rapid prototypes for functional testing with advantages of low cost, minimal wastage, and ease of material change. Due to the intrinsically limited mechanical properties of pure thermoplastic materials, there is a critical need to improve mechanical properties for FDM-fabricated pure thermoplastic parts. One of the possible methods is adding reinforced materials (such as carbon fibers) into plastic materials to form thermoplastic matrix carbon fiber reinforced plastic (CFRP) composites those could be directly used in the actual application areas, such as aerospace, automotive, and wind energy. This paper is going to present FDM of thermoplastic matrix CFRP composites and test if adding carbon fiber (different content and length) can improve the mechanical properties of FDM-fabricated parts. The CFRP feedstock filaments were fabricated from plastic pellets and carbon fiber powders for FDM process. After FDM fabrication, effects on the tensile properties (including tensile strength, Young's modulus, toughness, yield strength, and ductility) and flexural properties (including flexural stress, flexural modulus, flexural toughness, and flexural yield strength) of specimens were experimentally investigated. In order to explore the parts fracture reasons during tensile and flexural tests, fracture interface of CFRP composite specimens after tensile testing and flexural testing was observed and analyzed using SEM micrograph.  相似文献   

5.
Carbon/carbon (C/C) composites containing zirconium carbide (ZrC) were prepared by a novel method. Carbon fiber felt with addition of zirconia was prepared by a microwave-hydrothermal reaction, followed by densification and graphitization. The crystalline structure of the pyrolytic carbon and morphology of the composites were investigated by X-ray diffraction, Raman spectrascope, polarized light microscope, and scanning electron microscopy. Results show that the ZrC grains with sub-micron size present a homogeneous distribution in carbon matrix. The degree of order of the pyrolytic carbon matrix is decreased due to adding ZrC into the C/C composites. Graphitization degree of the C/C composites is decreased by the addition of ZrC. ZrC grains uniformly embedded in the pyrolytic carbon matrix act as pinning particles blocking the conversion of disordered to ordered structure during graphitization. Thermal conductivity is higher in the C/C composites containing ZrC, which is attributed to the increased phonon-defect interaction produced by the thermal motion of the CO in the micropores and gaps of the composites.  相似文献   

6.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   

7.
ABSTRACT

The effect of temperature on the mechanical behavior of carbon fiber reinforced polyphenylenesulfide (PPS) composites was investigated by compressive and flexural tests from ambient temperature up to 150°C. The failure morphologies of the C/PPS composites were analyzed to identify the variation of failure modes. Related results showed that the mechanical behavior of C/PPS composites decreased severely with the increase of temperature due to the softening of matrix. The PPS resin film tensile test was carried out and the PPS matrix behavior was recognized as the main factor to dominate the mechanical behavior of composites under compressive/flexural loading at elevated temperatures. It can be found that there was an approximate linear relationship between the compression properties of C/PPS composites and the PPS matrix. The dependence of failure modes of composites on temperatures was closely related to the mechanical behavior of PPS matrix.  相似文献   

8.
The effects of nanoclay inclusion on cyclic fatigue behavior and residual properties of carbon fiber-reinforced composites (CFRPs) after fatigue have been studied. The tension–tension cyclic fatigue tests are conducted at various load levels to establish the S-N curve. The residual strength and modulus are measured at different stages of fatigue cycles. The scanning electron microscopy (SEM) and scanning acoustic microscopy (SAM) are employed to characterize the underlying fatigue damage mechanisms and progressive damage growth. The incorporation of nanoclay into CFRP composites not only improves the mechanical properties of the composite in static loading, but also the fatigue life for a given cyclic load level and the residual mechanical properties after a given period of cyclic fatigue. The corresponding fatigue damage area is significantly reduced due to nanoclay. Nanoclay serves to suppress and delay delamination damage growth and eventual failure by improving the fiber/matrix interfacial bond and through the formation of nanoclay-induced dimples.  相似文献   

9.
To improve the interfacial properties of carbon fibers/epoxy composites, we introduced a gradient interphase reinforced by graphene sheets between carbon fibers and matrix with a liquid phase deposition strategy. Interlaminar shear strength and flexural strength of the composites are both improved. The interfacial reinforcing mechanisms are explored by analyzing the structure of interfacial phase with linear scanning system of scanning electron microscope and atomic force microscope. Results indicate that carbon element shows a graded dispersion in the interface region and a gradient interface layer with the modulus decreasing from fibers and matrix is found to be built. To verify the effect of gradient interphase on the interfacial properties of composites, the mixture of carbon fiber/graphene/epoxy is sonicated before curing to disperse graphene sheets in matrix homogeneously. As a result, gradient interphase structures are disappeared and interfacial performance of composites is found to be weakened. The role of gradient interface layers in enhancing interfacial performances is further proved from a different angle.  相似文献   

10.
The interface structures and fracture behavior of the two-dimensional carbon/carbon composites by isothermal vapor infiltration have been investigated. The results show that the graphene layers exhibit long-range order in high/textured pyrocarbon matrix and are curved in about 5-nm interface region of the fiber/high-textured. Some globular nanoparticles are formed on the fiber surface and the high-textured layer about 10 nm exists in the interface of the fiber/low-textured. The graphene layers stacks are scrolled and folded in the medium-textured and they are waved together in the interface of the fiber/medium-textured. The pseudo-plastic fracture behavior of the two-dimensional carbon/carbon composites is resulted from the dominant high-textured matrix and a moderate interfacial bonding force. A strong adhesion of the fiber/low-textured and the thicker fiber increased by surrounding low-textured layer result in the increasing flexural strength. The single medium-textured and a very strong bonding force of the fiber/medium-textured lead to the brittle fracture behavior.  相似文献   

11.
Unidirectional carbon fibre reinforced SiC composites were prepared from four types of carbon fibres, PAN-based HSCF, pitch-based HMCF, CF50 and CF70, through nine cycles or twelve cycles of impregnation of polycarbosilane and subsequent pyrolysis at 1200°C. The polycarbosilane-derived matrix was found to be -SiC with a crystallite size of 1.95 nm. The mechanical properties of the composites were evaluated by four-point bending tests. The fracture behavior of each composite was investigated based on load-displacement curves and scanning electron microscope (SEM) observation of fracture surfaces of the specimens after tests. It was found that CF50/SiC and CF70/SiC exhibited high strength and non-brittle fracture mode with multiple matrix cracking and extensive fibre pullout, whereas HSCF/SiC and HMCF/SiC exhibited low strength and brittle fracture mode with almost no fibre pullout. The differences in the fracture modes of these carbon fibre/SiC composites were thought to be due to differences in interfacial bonding between carbon fibres and matrix. Values of flexural strengths of CF70/SiC and CF50/SiC were 967 MPa and 624 MPa, respectively, which were approximately 75% and 38% of the predicted values. The relatively lower strength of CF50/SiC, compared with CF70/SiC, was mainly attributed to the shear failure of CF50/SiC during bending tests.  相似文献   

12.
Carbon/carbon composites are well suited to high-friction applications due to their excellent mechanical and thermal properties. Since interfacial shear strength is critical to composite performance, characterization of fiber/matrix interface is a crucial step in tailored design of composites. This article presents a hybrid experimental/analytical study to evaluate the interfacial shear strength (IFSS) of PAN-fiber-reinforced carbon matrix composites. Microstructure was studied by light and high-resolution transmission electron microscopy (HRTEM). A series of push-out tests were conducted to examine the fiber/matrix debonding process. The residual fiber displacement was confirmed by scanning electron microcopy (SEM). The validity of the calculated IFSS value was demonstrated by a simplified analytical approach, where the components contributing to the measured displacement were analyzed considering the mechanics of the indentation. The method described in this article has been successfully used for determining the IFSS of PAN-fiber-reinforced carbon matrix composites.  相似文献   

13.
本文将不同纤维织物与750HOI环氧乙烯基酯树脂复合成三种层合结构的复合材料,对比研究了树脂浇铸体及复合材料在60℃与90℃去离子水中的湿热性能。通过材料的吸湿特性、弯曲性能、微观结构以及动态热机械性能的变化,分析了材料的湿热老化机理。研究表明:不同纤维织物增强的复合材料吸湿行为具有较大差异;90℃浸泡2160h后,添加碳纤维表面毡的复合材料F2弯曲强度保留率为70.42%,而表面层为方格布的复合材料J的保留率为51.88%;红外光谱(FTIR)研究表明:90℃湿热老化后复合材料基体树脂发生了水解断裂;扫描电镜(SEM)和动态热机械分析(DMA)研究发现:老化后复合材料中纤维/基体界面发生脱粘破坏,界面结合强度降低,试样的Tg和储能模量减小。  相似文献   

14.
采用频率为10 Hz、 应力比为0.1的正弦波研究了室温下循环次数对二维炭毡C/C复合材料(2D炭毡C/C复合材料)的弯曲疲劳强度的影响, 并利用偏光显微镜和扫描电子显微镜对该材料的热解碳组织形貌以及疲劳前后的断口形貌和微观结构进行了观察。结果表明, 2D炭毡C/C复合材料的热解碳结构由光滑层和各向同性层组成, 其疲劳极限为76.5 MPa, 是静态弯曲强度的90%。在不同循环周次的疲劳载荷作用后, 材料的剩余弯曲强度和韧性都得到了提高。在疲劳加载过程中, 纤维/基体的界面结合强度发生弱化, 纤维的协同承载能力得到提高, 使C/C复合材料出现了疲劳强化现象。   相似文献   

15.
A hierarchical Cf/C–SiC composite was fabricated via in situ growth of carbon nanotubes (CNTs) on fiber cloths following polymer impregnation and pyrolysis process. The effects of CNTs grown in situ on mechanical properties of the composite, such as flexural strength, fracture toughness, crack propagation behavior and interfacial bonding strength, were evaluated. Fiber push-out test showed that the interfacial bonding strength between fiber and matrix was enhanced by CNTs grown in situ. The propagation of cracks into and in fiber bundles was impeded, which results in decreased crack density and a “pull-out of fiber bundle” failure mode. The flexural strength was increased while the fracture toughness was not improved significantly due to the decreased crack density and few interfacial debonding between fiber and matrix, although the local toughness can be improved by the pull-out of CNTs.  相似文献   

16.
循环湿热环境下碳纤维复合材料界面性能   总被引:1,自引:1,他引:0  
为研究循环湿热环境对CCF300/5405复合材料体系界面性能的影响,首先对该体系循环吸湿—脱湿行为进行研究,其次分析湿热环境下层间剪切强度的变化,最后采用扫描电镜观察纤维/基体界面的微观形貌.研究结果表明:CCF300/5405体系吸湿处理后,纤维与基体间界面遭到水分破坏,产生大量空隙和裂纹,使得水分的扩散速率明显增加,吸湿率增大,且这种破坏不可逆;吸湿之后材料层间剪切强度下降,烘干之后可以恢复到近于自然干态水平;相对于水分对复合材料的不可逆破坏,可逆破坏对层间剪切强度值减小的贡献更大.  相似文献   

17.
使用短芳纶纤维(AF)增强炭黑/丁苯橡胶(CB/SBR)复合材料,研究AF对复合材料疲劳行为的影响。在应力控制条件下,少量AF的加入使缺口试样的疲劳寿命提高了25.5倍;疲劳使试样的储能模量(G')降低,AF的加入使疲劳后试样的Payne效应降低,G0'/G100'值降低10.5%;复数模量随疲劳周期增加而降低,但少量纤维能使复合材料的复数模量保持在较高的水平,30 000周疲劳下AF-CB/SBR的复数模量仍为CB/SBR的1.73倍;疲劳后AF-CB/SBR复合材料的100%和300%定伸应力随疲劳变形量的增加而先增大后降低,断裂伸长率有所下降。试样疲劳后相对于拉伸变形量,纤维的增强作用产生滞后效应,相对界面滑脱能随疲劳应变幅度的增加而降低; SEM结果显示,疲劳后橡胶基体出现一定的剥离,纤维与橡胶界面受到损伤。  相似文献   

18.
C_f/PMMA-PMA复合材料疲劳行为及生物活性   总被引:1,自引:0,他引:1       下载免费PDF全文
以甲基丙烯酸甲酯(MMA)和丙烯酸甲酯(MA)为起始原料,过硫酸钾(KPS)为引发剂,1.5 wt%聚丙烯腈基碳纤维为增强相,采用悬浮聚合的方法,制备了碳纤维增强PMMA-PMA基复合材料(Cf/PMMA-PMA)。研究了疲劳周期对Cf/PMMA-PMA复合材料抗弯强度的影响及其生物活性。采用X射线衍射分析(XRD)对复合材料的结构进行了表征,应用万能材料试验机测试了复合材料的抗弯强度,并利用扫描电子显微镜(SEM)对复合材料的断面显微形貌进行了分析。结果表明,在0~5000次的循环次数内,复合材料的抗弯强度没有显著变化,试样表面的受力处也没有出现裂纹等现象。随复合材料在模拟体液(SBF)中浸泡时间的延长,复合材料表面沉积的羟基磷灰石(HA)颗粒增多,说明复合材料具有良好的生物活性。此外,SBF的浸泡对Cf/PMMA-PMA复合材料的力学性能几乎没有影响。  相似文献   

19.
樊威  李嘉禄 《复合材料学报》2015,32(5):1260-1270
为了探索增强体结构对碳纤维增强聚合物基复合材料(CF-PMCs)热氧老化后弯曲性能的影响,对三维四向编织碳纤维/环氧复合材料(简称为三维编织复合材料)和层合平纹碳布/环氧复合材料(简称为层合复合材料)的热氧老化性能进行了研究。利用FTIR、老化失重、弯曲测试和SEM等手段分析了热氧老化前后的试样。结果表明:热氧老化导致基体树脂的氧化断链以及纤维/基体界面结合力的退化是两种复合材料弯曲强度和弯曲模量下降的原因,弯曲强度比弯曲模量更容易受热氧老化的影响。在相同的热氧老化条件下,层合复合材料的热氧老化失重大于三维编织复合材料的,而三维编织复合材料的弯曲强度和弯曲模量保留率均大于层合复合材料的。在140℃下老化1 200h后,层合复合材料的弯曲强度和弯曲模量保留率分别为74.7%和88.3%,而对应的三维编织复合材料的分别为79.4%和91.5%。因此,采用三维编织预制件作为CF-PMCs的增强体是一种有效的提高其热氧稳定性的方法。  相似文献   

20.
在C/C 复合材料表面制备了MoSi2-SiC 抗氧化涂层, 分析了涂层工艺对C/C 复合材料组织的影响, 测试了材料的室温弯曲力学性能。结果表明, 该工艺在C/C 复合材料表面生成抗氧化涂层的同时, 基材内部的层间和纤维束界面, 以及孔隙周围也被硅化。C/C 复合材料经涂层工艺处理后, 弯曲断裂行为发生改变, 弯曲强度明显升高,塑性有一定程度的降低。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号