首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于DEFORM反传热模型表面换热系数的确定   总被引:1,自引:0,他引:1  
以7075铝合金厚板淬火过程为对象,研究DEFORM反传热模型中控制参数对表面换热系数计算和温度预测精度的影响规律。结果表明,当选择实测温度曲线上的拐点温度作为温度控制点,且表面换热系数初始值接近平均换热系数时,采用反传热模型确定的表面换热系数所预测的冷却曲线与实测曲线吻合较好。在此基础上选取合理的控制参数,并确定了7075铝合金厚板淬火过程的表面换热系数,经冷却曲线预测结果与实测值对比表明,采用DEFORM反传热模型确定的表面换热系数所预测的温度场有较高精度,可以满足工程应用需要。  相似文献   

2.
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 °C at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.  相似文献   

3.
设计了一套水雾化喷淬试验装置研究了立置状态下35CrMnSiA薄钢板在喷淬过程中不同位置的降温变化曲线,还使用DEFORM软件中的Inverse Heat Transfer模块对试验钢板表面的综合换热系数进行了求解。结果表明,当试验钢板在喷口尺寸为5 mm,喷口到表面距离为300 mm,喷口压力分别为0.1、0.2和0.3 MPa的条件下,在450 ℃以上的高温段和200 ℃以下的低温段,钢板的表面换热系数较低,而在中温段可获得较高的表面换热系数。相对于0.1 MPa的喷口压力,0.2 MPa的喷口压力下试验钢板的冷却能力有着明显的提高,而继续增加喷口压力至0.3 MPa,冷却能力提升却不明显。  相似文献   

4.
A mathematical model of the spray deposition process, based on heat flow analysis during solidification of droplets, as well as that of the spray deposit, is presented. The heat flow during cooling of droplets is analyzed in five distinct stages. A one-dimensional heat transfer model, using a finite difference method, is used to calculate the temperature of the deposit. The results indicate that the cooling rate of a wide size range of droplets of Al-4.5 Cu alloy in the spray varies from 103–105°C s−1 in contrast to a slow cooling rate of 1–10°C s−1 of the spray deposit. The spray enthalpy on the deposition surface increases linearly with the melt superheat. In contrast, the atomization gas pressure does not have a significant influence on the enthalpy of the spray in this process. The cooling rate of the deposits predicted from the model compares well with those obtained by the measurements.  相似文献   

5.
Heat transfer during quenching of chill-cast modified and unmodified A357 Al-Si alloy was examined using a computer-aided cooling curve analysis. Water at 60 °C and a vegetable oil (palm oil) were used as quench media. The measured temperatures inside cylindrical probes of the A357 alloy were used as inputs in an inverse heat-conduction model to estimate heat flux transients at the probe/quenchant interface and the surface temperature of the probe in contact with the quench medium. It was observed that modified alloy probes yielded higher cooling rates and heat flux transients. The investigation clearly showed that the heat transfer during quenching depends on the casting history. The increase in the cooling rate and peak heat flux was attributed to the increase in the thermal conductivity of the material on modification melt treatment owing to the change in silicon morphology. Fine and fibrous silicon particles in modified A357 probes increase the conductance of the probe resulting in higher heat transfer rates. This was confirmed by measuring the electrical conductivity of modified samples, which were found to be higher than those of unmodified samples. The ultrasound velocity in the probes decreased on modification.  相似文献   

6.
The interfacial heat transfer between the casting and the substrate from liquid/solid contact to solid/solid contact with pressure was investigated using a set of equipment designed according to the characteristics of the top side-pouring twin-roll casting process. The interfacial heat transfer behavior of this process consists of 4 stages: chilling, solidification shrinkage, compression and cooling. High values of the IHTC ranging from 50,000 to 90,000 W/m2 °C were detected in the chilling stage, followed by a sharp decrease in solidification shrinkage stage (4000–8000 W/m2 °C). Due to the pressure, which modeled the effect of rolling in twin-roll casting, the IHTC bounced back to 6000–20000 W/m2 °C, according to different conditions. The influence of process variables such as pressure magnitude, compress speed, pouring temperature, surface roughness and alloy composition had been discussed. Because of the compress action, the influence of these variables performed in a different way, but it was concluded that the way to improve the contact conditions always accompanied with an increase in the IHTC.  相似文献   

7.
The nickel-based superalloy or titanium materials used in the aerospace industry are cooled from high temperatures during the heat treatment process to obtain appropriate strength properties. However, unacceptably high residual stresses can be developed in some situations if the rate of cooling is too high so that air-assisted, atomized water sprays have been suggested as an alternative to the widely used techniques of quenching in oil or water. Thus, this article examines two aspects of the use of air-water sprays for quenching aeroengine forgings. First, basic experimental heat transfer data are presented for a wide range of water flows and for surface temperatures up to approximately 850 °C, for both plane and recessed surfaces. Second, the heat transfer data are used in numerical simulations to study the influence of nonuniform spray distributions on the residual stress patterns in a typical forging. This paper was presented at the ASM Third International Conference on Quenching and Control of Distortion, 24–26 March 1999, in Prague, Czech Republic.  相似文献   

8.
徐戎  李落星 《金属热处理》2021,46(12):276-281
通过一系列风冷淬火试验,研究了气体高速冲击金属热表面的换热过程,采用反传热法对界面热流密度 (q) 和界面传热系数 (h)进行了求解,探究了试样的表面粗糙度和淬火初始温度、试样表面的冷却介质流量密度对换热过程的影响。结果表明:试样淬火初始温度对风冷淬火界面换热有显著影响,当其从470 ℃增大到520 ℃时,qh的最大值增大约50%,淬火表面温度下降到200 ℃的平均冷却速率增大约43%。随试样表面介质流量密度增大,界面热交换呈现出先增大后减小的趋势,即存在一个与最高界面换热效率对应的临界试样表面介质流量密度,且喷射角度越接近90°,该临界值越小。随试样表面粗糙度增大,界面换热不断减小,这可能归因于越粗糙的表面对边界层内流体的钉扎作用越明显,越不利于提高界面换热效率。此外,在250~380 ℃区间,界面换热系数随表面温度变化曲线普遍存在一个凹陷区域,这可能与铝合金淬火冷却过程中二次相的析出有关。  相似文献   

9.
袁静  吴战芳  徐李军  赵和明 《连铸》2016,35(3):9-13
采用有限差分法建立了高温钢板连续喷水冷却过程中一维非稳态传热条件下冷却水换热系数的计算模型,将试验测量到的数据应用该模型计算出了试验过程中冷却水与高温钢板间的换热系数[h。]分析结果表明:在流量一定的情况下,压力对换热系数的影响较明显,而在压力一定的情况下,流量对换热系数的影响较小,冷却水的换热系数随喷水密度的增加而增大,随钢板表面的温降呈先增加后减小的趋势。总结出了钢板表面温度为400~1 000 ℃,喷水密度为90~180 L/(m2·min)的条件下,喷水冷却换热系数[h]的经验计算公式。  相似文献   

10.
A combination of experiments and numerical analyses were used to examine the cooling conditions, solidification microstructure and interfacial heat transfer in A319 cast in a chilled wedge format. Both solid copper chills and water cooled chills, with and without a delay in water cooling, were examined in the study. Various chill preheats were also included. The goal of the investigation is to explore methods of limiting heat transfer during solidification directly beside the chill and increasing cooling rates during solidification away from the chill. Within the range of conditions examined in the study, chill preheat was found to have only a small effect on cooling rates between 5 and 50 mm from the chill/casting interface, pour superheat a moderate effect and water cooling a significant effect. In comparison to the results for the solid chill, the solidification time at 5 mm with water cooling applied at the beginning of mould filling is reduced from 56 to 15 s and at 50 mm from 588 to 93·5 s. Furthermore, the average cooling rate during solidification is increased from 1·9 to 7·06°C s?1 at 5 mm and from 0·18 to 1·13°C s?1 at 50 mm. At 50 mm, for example, the increased cooling rate achieved with water translates into a reduction in secondary dendrite arm spacing from 40 to 25 μm or ~40%. Delaying the water cooling by 10 s facilitated slow cooling rates at 5 mm (similar to those achieved with a solid chill) and high cooling rates 50 mm from the chill. A temperature based correlation was found to be suitable for characterising the behaviour of the interfacial heat transfer coefficient in the solid shill castings, whereas a time based correlation was needed for the water cooled castings.  相似文献   

11.
The heat flux (q) and heat transfer coefficient (h) at the interface between hot aluminum surface and spray water were determined by using an inverse heat conduction method. Good agreements between numerically calculated temperatures with the inverse identified h and experimentally measurements demonstrate that the method is valid for solving the q and h of spray quenching process. The estimated heat flux consists of three main stages of transition boiling, nucleate boiling and single-phase cooling. The results show that both the heat flux and heat transfer coefficient increase with the increasing of spray pressure. When the surface temperature is lower than 170 °C, the q, h and the maximum heat transfer coefficient (hmax) decrease and then increase as surface roughness increases. However, when the surface temperature is higher than 170 °C, the influence of surface is insignificant. This phenomenon may be attributed to the variation of nucleation site density with surface roughness.  相似文献   

12.
改进接触传热测量装置,利用有限元模拟镁合金轧制过程辊缝界面的瞬态换热特性,以准确分析温度、压力和粗糙度对接触传热系数的耦合影响。结果表明,接触传热存在2个明显的临界阈值。当温度在150℃以下且界面压力低于22.1 MPa时,存在良好的线性规律。当超过第一阈值后,接触传热明显增强,呈现显著的非线性特征。另外,当界面压力超过50 MPa(第二阈值)且温度超过300℃时,接触传热很快趋于稳定。显然,此时的第二阈值与镁合金带材表面摩擦峰的弹塑性变形直接相关,通过增加微接触面积和摩擦峰的交互扩散,从而形成高压接触传热。基于这一现象的规律特征,有助于精确控制辊缝的接触界面温度,便于设计合适的轧制参数或优化轧制工艺。  相似文献   

13.
Abstract

For computer simulation of a quenching process, the fundamental prerequisite is to have the relevant heat transfer coefficient (HTC) calculated as a function of the workpiece’s surface temperature and time respectively. In order to calculate the HTC experimental measurement of the temperature–time history (cooling curve) near the workpiece surface is necessary. In this investigation, cylindrical probes with diameters of 20, 50 and 80 mm are used. The cooling curve was always measured 1 mm below the surface of the probe. Special care has been taken to keep all other factors (e.g. design of the probes, temperature measurement, quenching conditions and calculation procedure), which can influence the calculated HTC, constant, in order to ensure that the only variable is the diameter of the probe. Assuming a radially symmetrical heat flow at the half length of the probe, the HTC was calculated using one-dimensional inverse heat conduction method. The unexpected striking result of this investigation is the fact that for the probe diameter (80 mm) the calculated HTC as a function of surface temperature does not show the film boiling phase. A plausible explanation for this effect is given, based on the critical heat flux density. The possibility of establishing a simple fixed relation (a correction factor) between the HTC and the diameter of cylinders is discussed.  相似文献   

14.
《Intermetallics》2002,10(7):701-715
Samples of a range of TiAl-based alloys have been cooled directly to room temperature at rates between 0.1 and 500 °C s−1 in order to define the transformation behaviour during continuous cooling (CCT). In addition other samples have been cooled rapidly to predetermined temperatures where they have been held for times up to 18,000 s before cooling rapidly to room temperature in order to determine their time-temperature-transformation (TTT) behaviour. It has been found that the massive transformation occurs at the highest cooling rates used (500 °C s−1) in all the alloys studied apart from Ti–44Al–4Nb–4Zr–0.2Si–1B. In this alloy the high-temperature beta phase partially transformed during rapid cooling to lenticular alpha which, together with the remaining beta, was retained at room temperature. The effects of holding at selected temperatures were as anticipated from the CCT curves and the equilibrium diagrams. In all cases the room temperature tensile properties were improved for the finest microstructures—i.e. for the fastest cooling rates used, although with alloys with B addition (i.e. grain-refined alloys) the effect of cooling rate was less important. The changes in microstructure and changes in the tensile properties and hardness of samples which have been tempered after quenching have also been determined. Appropriate tempering of samples which had been cooled at a rate which caused them to transform massively gives rise to fine microstructures of intimately mixed equilibrium phases. In the case of Ti–48Al–2Nb–2Cr this leads to a mixture of convoluted alpha and gamma grains of about 50 μm (even although it contains no B and is therefore not grain-refined) and to a plastic elongation of 1.3% which is significantly better than the 0.5% found in coarse-grained air-cooled or furnace-cooled samples of this alloy.  相似文献   

15.
The purpose of this study is to investigate the influence of cooling rate and Bi addition on the microstructure evolution and mechanical properties of Sn-3.5Ag alloy. A series of Sn-3.5Ag-xBi solders has been fabricated with Bi content in the range of 0.5-3.5 wt.%. After solution heat treatment at 170 °C for 24 h and subsequent aging heat treatment at 100 °C for 2 h, samples were divided into two groups. One group was rapidly quenched into iced water (water quenching) for the fast cooling rate (20 °C/s), while the second group was slowly cooled (furnace cooling) in the furnace for the slow cooling rate (0.2 °C/s) after the furnace reflow. The microstructural evolutions of the present solders have been investigated using x-ray diffraction and scanning electron microscopy. The microhardness was measured to correlate the mechanical properties to alloy compositions and cooling rate. It was found that the microhardness of Sn-3.5Ag-xBi solders increased with increasing cooling rate. The indentation creep curves have been evaluated from the obtained microhardness values. Results revealed the steady-state creep rate decreased with increasing Bi content exhibiting an anomalous behavior at 2.5Bi. The reason for improved creep resistance of Sn-3.5Ag-xBi solders is the result of the combination of the solid solution strengthening and precipitation strengthening of Bi. The mean values of stress exponent indicated that the operative creep mechanism is dislocation climb.  相似文献   

16.
徐戎  李落星 《金属热处理》2022,47(2):243-249
通过喷射淬火试验,研究了在高温铝合金表面进行水射流淬火、喷雾淬火和高速空气淬火的热交换过程,并对这3种在线淬火界面的热流密度 (q) 和传热系数 (h) 进行了反分析求解,重点探究了试样表面介质流量密度 (qs) 对界面热交换率的影响规律及其机理。结果表明,随qs增大,喷射淬火界面热交换率先增大后减小,即存在一个临界qs,此时临界热流密度 (qc) 取得最大值。当qs小于其临界值时,喷射淬火界面热交换率随qs增大而增大;当qs大于临界值时,随qs继续增大,喷射淬火界面热交换率反而减小。喷雾淬火的单位体积冷却介质最大吸热量 (Qmax) 最高,且淬火介质相同时,Qmaxqs增大而减小。增大qs对提高喷水淬火表面的热交换率效果最好。  相似文献   

17.
铝合金厚板淬火表面换热系数的离散解析求法   总被引:4,自引:1,他引:3  
为了快速准确求取铝合金厚板淬火过程的换热系数,对淬火热传导过程进行分析。首先,将换热系数解析过程假设为淬火温度离散化的,并且是相邻离散点可进行迭代优化的计算过程。然后,分步解析求解了各离散温度区间的换热系数,最后完成了数据修正和仿真计算还原。结果表明,该方法获得的换热系数,可以使实验冷却曲线与计算冷却曲线较好的吻合,从而证明这种计算方法的可行性,并在文末对该方法的误差来源和特点进行了分析。  相似文献   

18.
依据喷水冷却装置的结构建立数学模型,对冷却装置的水流场和温度场进行了数值模拟;研究了大型轴类件喷水淬火过程中水流的冲击距离和喷嘴内径对工件表面换热系数的影响,获得了一些关键的特性参数。  相似文献   

19.
Different sized single droplets of Cu–6%Sn alloy were prepared by drop on demand (DOD) technique. The secondary dendrite arm spacing was measured and correlated with the droplet cooling rate by a semi-empirical formula. The microstructure of droplets was observed by optical microscopy (OM) and electro backscatter diffraction (EBSD). The dendrite feature of single droplets depends on solidification rate, cooling medium and flight distance. When droplets collide with each other at temperatures between solidus and liquidus, the dendrites and grains are refined obviously possibly because the collision enhances the heat transfer. The cooling rate of colliding droplets is estimated to be more than 4×104 K/s based on a Newton's cooling model. The dendrites grow along the colliding direction because of the temperature gradient induced by the internal flow inside the droplets.  相似文献   

20.
An optimization-based numerical procedure was developed to determine the temperature-dependent interfacial heat transfer coefficient (IHTC). The effects of temperature, pressure and oxide scale thickness were analyzed, for oxide thickness between 9 μm and 156 μm and pressure from 8 MPa to 42 MPa. Oxide scales and contact pressure both show distinctive effects on IHTC in the cooling process. The average IHTC decreases about 2461 W/(m2 °C) with the increase of oxide scale thickness and increases 2620 W/(m2 °C) with the increase of pressure. Based on the two-way ANOVA, the effect of contact pressure influences the IHTC most. Their mutual interaction is negligible. The IHTC decreases when the average temperature between the blank and die surface is above 250 °C and increases when the latent heat release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号