首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The g-C3N4/Fe3O4/Ag/Ag2SO3 nanocomposites have been successfully fabricated by facile refluxing method. The as-obtained products were characterized by XRD, EDX, SEM, TEM, UV–vis DRS, FT–IR, TGA, PL, and VSM techniques. The results suggest that the Ag/Ag2SO3 nanoparticles have anchored on the surface of g-C3N4/Fe3O4 nanocomposite, showing strong absorption in the visible region. The evaluation of photocatalytic activity indicates that for the g-C3N4/Fe3O4/Ag/Ag2SO3 (40%) nanocomposite, the degradation rate constant was 188 × 10?4 min?1 for rhodamine B, exceeding those of the g-C3N4 (16.0 × 10?4 min?1) and g-C3N4/Fe3O4 (20.2 × 10?4 min?1) by factors of 11.7 and 9.3, respectively. The results showed that the nanocomposite prepared by refluxing for 120 min has the superior photocatalytic activity and its activity decreased with rising the calcination temperature. The trapping experiments confirmed that superoxide ion radical was the main active species in the photocatalytic degradation process. Also, it was demonstrated that the magnetic photocatalyst has considerable activity in degradation of one more dye pollutant. Finally, the reusability of the photocatalyst was evaluated by five consecutive catalytic runs. This work may open up new insights into the utilization of magnetically separable nanocomposites and provide new opportunities for facile fabrication of g-C3N4-based plasmonic photocatalysts.  相似文献   

2.
以伊利石为载体、双氰胺(C2H4 N4)为类石墨氮化碳(g-C3N4)前驱体,采用液相浸渍-热聚合联合工艺制备出一种可见光响应的g-C3N4/伊利石光催化复合材料。利用XRD、FESEM、AFM、UV-Vis、BET及PL对样品的微观结构、界面特性及光学性能进行检测分析,同时考察g-C3N4/伊利石光催化复合材料在可见光照射下光催化降解环丙沙星(CIP)的效果。结果表明:相比纯g-C3N4,g-C3N4/伊利石复合材料在可见光下具有更高的光催化性能,其光催化速率是纯g-C3N4的11.26倍;伊利石与g-C3N4构成的复合结构能够有效地抑制光生载流子的复合,改善了纯g-C3N4材料的吸附性能和光催化活性。  相似文献   

3.
Novel g-C3N4/Fe3O4/CuWO4 nanocomposites, as magnetic visible-light-driven photocatalysts, fabricated through a simple refluxing-calcination process. The synthesized photocatalysts were characterized by a series of techniques including XRD, EDX, SEM, TEM, HRTEM, FT-IR, TGA, BET, UV–vis DRS, PL, and VSM. The results showed that heterojunctions are formed between g-C3N4, Fe3O4, and CuWO4, which favor suppression of the photogenerated electron/hole pairs from recombination. The resultant g-C3N4/Fe3O4/CuWO4 (30%) sample exhibited superior photocatalytic performance. The degradation rate constants on the g-C3N4/Fe3O4/CuWO4 (30%) nanocomposite were almost 10.5, 17, 12.5, and 42.5 times higher than those of the pristine g-C3N4 for degradations of RhB, MB, MO, and fuchsine, respectively. Moreover, the photocatalyst was magnetically separated and recycled with negligible loss in the activity, which is important for the sustainable photocatalytic processes. Thus, the ternary nanocomposite could have potential applications in different photocatalytic processes.  相似文献   

4.
为了利用Fe3O4的磁响应性及石墨相C3N4(g-C3N4)优良的光催化活性,首先采用高温热聚合法,以尿素为前驱体制备g-C3N4,然后采用水热法合成了可磁分离Fe3O4/g-C3N4复合材料。利用TEM、XRD、TGA、BET和振动样品磁强计(VSM)等多种测试手段表征分析Fe3O4/g-C3N4复合材料的形貌、晶型结构、比表面积、成分、饱和磁化强度等。通过模拟太阳光下Fe3O4/g-C3N4复合材料光催化吸附降解亚甲基蓝(MB)的实验,评价了Fe3O4/g-C3N4复合材料的吸附性能及光催化性能。结果表明,可磁分离Fe3O4/g-C3N4复合材料具有较大的比表面积,约为71.89 m2/g;且具有较好的磁性,饱和磁化强度为18.79 emu/g,可实现复合材料的分离回收;光照240 min时,Fe3O4/g-C3N4复合材料对MB的去除率为56.54%。所制备的Fe3O4/g-C3N4复合材料具有优良的吸附性能、光催化活性和磁性,并可通过外加磁场进行分离与回收。  相似文献   

5.
The low surface area, high recombination rate of photogenerated charge carriers, narrow visible range activity, and difficulty in the separation from cleaned solutions limit the wide application of g-C3N4 as a photocatalyst. Herein, we have succeeded in developing a one-pot strategy to overcome the above-mentioned difficulties of g-C3N4. The broadening of the visible-light response range and inducing magnetic nature to g-C3N4 was succeeded by preparing a nanocomposite with Fe2O3 via a facile solvothermal method. The preparation method additionally imparted layer exfoliation of g-C3N4 as evident from the XRD patterns and TEM images. The strong interaction between the components is revealed from the XPS analysis. The broadened visible-light absorbance of Fe2O3/g-C3N4 with a Z-scheme photocatalytic degradation mechanism is well evident from the UV‒Vis DRS analysis and PL measurement of the composite with terephthalic acid. The active species of photocatalysis were further investigated using scavenging studies in methylene blue degradation that revealed hydroxyl radicals and holes as the major contributors to the activity of Fe2O3/g-C3N4.  相似文献   

6.
Photoactive ZnS/TiO2 nanocomposites were prepared via microemulsion-mediated solvothermal method. The structure, composition, physicochemical property, and morphology of the composites were characterized by powder X-ray diffraction (XRD), Raman scattering studies, UV diffuse reflectance spectroscopy (UV/DRS), photoluminescence (PL) spectroscopy, and transmission electron microscopy (TEM). It showed that the composites were cube-shaped with particle sizes of 10 to 15 nm, and the phase structure for ZnS and TiO2 in the composites was cubic and anatase, respectively. The content of the ZnS in the composites was 2.1%, 10.7%, and 19.9%, respectively. Compared with the solitary anatase TiO2, the ZnS/TiO2 exhibited enhanced visible-light photocatalytic activity for the aqueous parathion-methyl degradation. Factors including the interactions between the phases of ZnS and TiO2, strong adsorption of the substrate at the surface of the ZnS/TiO2 nanocomposites, and preassociation of the substrate and composites are responsible for this enhancement photocatalytic activity.  相似文献   

7.
通过水热法在导电凹凸棒石(C-ATP)表面原位生长TiO2纳米棒制得毛虫状结构的TiO2/C-ATP复合材料,然后以TiO2/C-ATP为载体,在TiO2纳米棒表面进一步复合g-C3N4量子点(CNQD)成功制备了多级结构的CNQD-TiO2/C-ATP异质结光催化材料。利用XRD、FTIR、SEM/TEM、紫外-可见吸收光谱(UV-Vis-DRS)、荧光发射光谱(PL)、BET比表面积分析仪和光电化学等技术对样品进行表征。在可见光照射下,考察了样品对盐酸四环素(TC)的光催化降解能力。结果表明:与TiO2/C-ATP和CNQD相比,CNQD-TiO2/C-ATP大幅提高了可见光响应、吸收能力和光生电子-空穴对的分离效率。当光照时间为120 min时,CNQD-TiO2/C-ATP对TC去除率可达88%。   相似文献   

8.
以三聚氰胺、葡萄糖和氯化铵为原料制备一种具有高比表面积的碳氯共掺杂介孔g-C_(3)N_(4)(C-Cl-CN)光催化剂,并考察其光催化降解罗丹明B(RhB)的性能。采用XRD,XPS,SEM,UV-Vis DRS和PL测试手段表征和分析催化剂的晶型结构、化学组成及微观形貌。结果表明:C-Cl-CN具有最高的比表面积(108.7 m 2/g),降解RhB的速率常数达到0.02290 min^(-1),是纯g-C_(3)N_(4)的9.4倍,且具有良好的催化稳定性。葡萄糖和氯化铵在聚合过程中起到双气泡模板和元素掺杂剂的作用,一方面提升催化剂的比表面积,另一方面减小能带间隙,增强催化剂的光吸收性能。  相似文献   

9.
Iron oxide films were grown on sapphire substrates by pulsed laser deposition at substrate temperatures between 100 and 700 °C. X-ray diffraction, Raman spectroscopy, and vibrational sample magnetometer analysis revealed that structural and magnetic properties of the iron oxide films strongly depend on the substrate temperature during growth. Single phase Fe3O4 film was successfully grown on sapphire substrate at a substrate temperature of 500 °C. The saturation magnetic moment of the single phase Fe3O4 film is 499 emu/cm3, which is in good agreement with the value reported for bulk magnetite, suggesting the Fe3O4 film is of high crystal quality without antiphase boundaries.  相似文献   

10.
通过简单的水热法制备了Co3O4/rGO/g-C3N4催化剂,并在可见光照射下用于光催化臭氧氧化降解2,4-二氯苯氧乙酸(2,4-D)。利用XRD, SEM, TEM, XPS, UV-vis DRS, FT-IR和瞬态光电流对样品进行测试表征。研究表明,Co3O4, rGO和g-C3N4形成异质结后光生电子-空穴(e--h+)对的分离效率,e-的迁移能力以及光催化臭氧氧化活性都明显提升。此外,0.5Co3O4/0.25rGO/GCN对2,4-D具有100%的去除率,并具有最高反应速率(k=0.070 9 min-1)。经过计算得出光催化臭氧氧化2,4-D的协同因子为3.91,表明光催化和臭氧氧化间具有较好的协同效应。活性组分的捕获实验结果表明h+和·OH是光催...  相似文献   

11.
光催化技术是一种极具应用前景的环境修复技术,开发高效、稳定、具有可见光响应的光催化剂是其研究的重点之一。本文采用常压溶剂热法,以1, 3, 5-三(4-氨基苯基)苯(TAPB)和2, 5-二甲氧基苯-1, 4二甲醛(DMTP)为单体合成的共轭多孔有机聚合物TAPB-DMTP POP为基底,原位负载不同比例的g-C3N4,制备g-C3N4/POPs复合光催化剂。通过XRD、FTIR、BET、TGA、UV-Vis DRS、电流-时间(i-t)和EIS等测试方法表征了g-C3N4/POPs的化学结构与光学特性。在可见光条件下,选择Cr(Ⅵ)为模型污染物探究了不同gC3N4负载量的g-C3N4/POPs光催化还原效率,并对pH值、催化剂用量和底物浓度等影响因素进一步探究。结果表明:在pH=2条件下,g-C3N4/POP-2表现出了最佳...  相似文献   

12.
将自制层状石墨相氮化碳(g-C3N4)和WO3纳米片均匀混合,经煅烧制备WO3/g-C3N4复合半导体。利用XRD、SEM、TEM、UV-Vis DRS和PL对其进行表征。结果表明,g-C3N4呈现类石墨烯状片层结构,WO3为纳米片状结构,且分散在g-C3N4表面;与WO3复合后,UV-Vis吸收边发生了红移,拓宽了g-C3N4对可见光的响应。以罗丹明B(RhB)为模拟污染物,考察WO3/g-C3N4的光催化降解性能。WO3/g-C3N4质量比为1∶5时,表现出最佳的光催化活性,可见光照60 min后,RhB降解率可达到94.9%。光催化剂具有良好的稳定性,重复使用6次后,RhB的降解率依然达到88.9%。光催化机制研究表明,超氧自由基(·O2?)是光催化降解RhB的主要活性物种。   相似文献   

13.
As a low-cost visible-light-driven metal-free catalyst, graphitic carbon nitride (g-C3N4) has attracted increasing attention due to its wide applications for solar energy conversion, environmental purification, and organic photosynthesis. In particular, the catalytic performance of g-C3N4 can be easily modulated by modifying morphology, doping, and copolymerization. Simultaneous optimization, however, has little been achieved. Herein, a facile one-pot strategy is developed to synthesize porous B-doped g-C3N4 nanosheets by using H3BO3 and urea as the precursor during thermal polymerization. The resultant B-doped g-C3N4 nanosheets retain the original framework of bulk g-C3N4, while induce prominently enhanced visible light harvesting and narrowing band gap by 0.32 eV compared to pure g-C3N4. Moreover, the adsorption capacity and photodegradation kinetics of methylene blue (MB) under visible light irradiation over B-doped g-C3N4 nanosheets can be improved by 20.5 and 17 times, respectively. The synthesized porous B-doped g-C3N4 nanosheets also exhibit higher activities than pure g-C3N4 as bifunctional electrocatalyst for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). The enhanced catalyst performance of porous B-doped g-C3N4 nanosheets stems from the strong synergistic effect originating from the larger exposed active sites generated by the exfoliation of g-C3N4 into nanosheets and the porous structure, as well as the better conductivity owing to B-doping. This work provides a simple, effective, and robust method for the synthesis of g-C3N4-based nanomaterial with superior properties to meet the needs of various applications.  相似文献   

14.
Several nanoporous Fe_2 O_3-xSx/S-doped g-C_3 N_4(CNS) Z-scheme hybrid heterojuctions have been successfully synthesized by one-pot in situ growth of the Fe_2O_3-xSx particles on the surface of CNS. The characterization results show that S-doping in the g-C3 N4 backbone can greatly enhance the charge mobility and visible light harvesting capability. In addition, porous morphology of hybrid composite provides available open pores for guest molecules and also improves light absorbing property due to existence of multiple scattering effects. More importantly, the Fe_2 O_3-xSx nanoparticles formed intimate heterojunction with CNS and developed the efficient charge transfer by extending interfacial interactions occurred at the interfaces of both components. It has been found that the Fe_2 O_3-xSx/CNS composites have an enhanced photocatalytic activity under visible light irradiation compared with isolated Fe_2 O_3 and CNS components toward the photocatalytic degradation of methylene blue(MB). The optimal loaded Fe_2 O_3-xSx value obtained is equal to 6.6 wt% that provided 82% MB photodegradation after 150 min with a reaction rate constant of 0.0092 min~(-1) which was faster than those of the pure Fe_2 O_3(0.0016 min~(-1))and CNS(0.0044 min~(-1)) under the optimized operating variables acquired by the response surface methodology. The specific surface area and the pore volume of Fe_2 O_3(6.6)/CNS hybrid are 33.5 m~2/g and0.195 cm~3/g, which are nearly 3.8 and 7.5 times greater compared with those of the CNS, respectively. The TEM image of Fe_2 O_3(6.6)/CNS nanocomposite exhibits a nanoporous morphology with abundant uniform pore sizes of around 25 nm. Using the Mott-Schottky plot, the conduction and valence bands of the CNS are measured(at pH = 7) equal to-1.07 and 1.48 V versus normal hydrogen electrode(NHE), respectively.Trapping tests prove that ·OH-and ·O_2-radicals are major active species in the photocatalytic reaction.It has been established that formation of the Z-scheme Fe_2 O_3(6.6)/CNS heterojunction between CNS and Fe_2 O_3 directly produces ·OH as well as ·O_2-radicals which is consistent with the results obtained from trapping experiments.  相似文献   

15.
C3N4 nanowires and pseudocubic C3N4 polycrystalline nanoparticles have been synthesized by the reaction between C3N3Cl3 and NaN3 with Zn powder as catalyst. The process was carried out using a constant-pressure benzene thermal method at 40 MPa and 220 °C. The prepared nanowires have a diameter range of 3-6 nm and length range of 100-200 nm, while the diameters of the nanoparticles range from 10 nm to 40 nm. The as-prepared samples were characterized by X-ray powder diffraction (XRD), Fourier transform spectroscopy (FTIR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS).  相似文献   

16.
Uniform Fe3O4 octahedral microcrystals with perfect appearance have been successfully synthesized by a Triton X100-assisted polyol process. During the polyols process for the preparation of Fe3O4 octahedra, the introduction of Triton X100 decreases significantly the needed concentration of NaOH. The results show that Fe3O4 octahedra are composed of eight triangular sheets, which are equilateral triangles. The edge size of Fe3O4 octahedron is about 4 μm. The magnetic properties of Fe3O4 octahedral particles were evaluated on a SQUID magnetometer at room temperature. The value of saturation magnetization for Fe3O4 octahedra is 90 emu/g, which is close to the value of bulk magnetite. The remnant magnetization and coercive force of Fe3O4 octahedra are considerably low, which are rare for the Fe3O4 particles with the size scale of micrometers. The Fe3O4 octahedral microcrystals show high saturation magnetizations and very low coercivities.  相似文献   

17.
通过溶剂蒸发和二次高温煅烧石墨相碳化氮(g-C3N4)纳米片和WS2纳米片混合物构建WS2/g-C3N4异质结,该异质结保留g-C3N4和WS2主体结构的同时,在界面处形成化学键,确保该异质结的化学稳定性和热稳定性。光催化分解水制氢实验表明,WS2纳米片含量为3wt%时光催化制氢速率高达68.62 μmol/h,分别是g-C3N4纳米片和WS2纳米片的2.53倍和15.29倍,表明异质结的构建可大幅提升g-C3N4的光催化性能,循环实验表明该异质结在5次循环实验后光催化性能没有明显下降,表明该异质结的稳定性较好。光电性能测试表明异质结的构建不仅提高激发电子的转移效率,同时抑制激发电子空穴的复合率,大幅提升激发电子的利用效率,致使光催化分解水制氢速率较g-C3N4纳米片和WS2纳米片大幅提升。   相似文献   

18.
We present a systematic study on the preparation, microstructure, and magnetic properties of Fe3O4 microspheres and Fe3O4@SiO2 microspheres. Results showed that Fe3O4 microspheres’ diameter can be tuned by Fe3+ concentration, whereas their average grain size can be tuned by polyethylene glycol (PEG) 2000 dosage or PEG molecular weight. The magnetic saturation value of Fe3O4 microspheres was observed to be dependent on their average grain size, but not the sphere diameter. Fe3O4@SiO2 microspheres with different magnetic saturation values were achieved by adjusting shell thickness. Furthermore, the synthesized Fe3O4 and Fe3O4@SiO2 microspheres with high and controllable magnetic saturation value endow them with great application potentials.  相似文献   

19.
曾宪伟  赵东林 《功能材料》2004,35(Z1):605-608
用水解沉淀法制备纳米Fe3O4,然后在其溶液中原位合成聚苯胺,得到纳米Fe3O4/聚苯胺复合粒子.通过XRD、TEM、JDM等测试对纳米复合粒子的形态、结构及磁性能进行了研究.实验制备的纳米Fe3O4粒子粒径为30nm左右,在其表面沉积聚苯胺后,复合粒子的粒径达到了50nm左右.与纳米Fe3O4粒子相比,纳米Fe3O4/聚苯胺复合粒子的XRD峰形变得更为明锐.纳米复合粒子的磁性能表现出软磁性,与纳米Fe3O4粒子相比,矫顽力减小为0,这可以大大减小材料的磁滞损耗和退磁难度,性能得到改善.  相似文献   

20.
以硝酸铋、氯化钠和氢氧化钠为原料用液相沉淀法制备g-C3N4/Bi12O17Cl2复合光催化剂,并用X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、扫描电子显微镜(SEM)、紫外-可见漫反射光谱(UV-Vis DRS)等手段表征其组成、微观形貌和性能,以罗丹明B为模拟污染物研究了在可见光照射下g-C3N4对g-C3N4/Bi12O17Cl2复合光催化剂活性的影响及其光催化机理。结果表明,2% (质量分数) g-C3N4/Bi12O17Cl2复合光催化剂的光催化性能最好,见光90 min后对罗丹明B的降解率达到98%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号