首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron beam welding (EBW) was applied to 50 mm thick damage-tolerant Ti–6Al–4V (TC4-DT) alloy, and microstructure, microhardness and tensile properties of the defect-free welded joints were examined. The results indicated that the microstructure of the base metal is composed of primary α phases and the lamellar (α + β) bimodal structure. For the EBW joint, martensite basketweave microstructure is formed in fusion zone (FZ). Moreover, the heat affected zone (HAZ) near FZ consists of acicular martensite and a small portion of primary α phase. The HAZ near base metal consists of primary α phase and transformed β containing aciculate α. It is found that the boundary of the two portions of the HAZ was dependent on the β phase transus temperature during weld cooling. Microhardness values for FZ and HAZ are higher than that of base metal, and there are the peak values for the HAZ near the weld metal. The fracture locations of all the EBW tensile specimens are in base metal, and the ultimate tensile strength of the joints may reach about 95% of the base metal. In addition, with the depth increasing along the weld thick direction, the grain size of the FZ decreases and microhardness increases.  相似文献   

2.
The aim of this study was to evaluate the microstructure, hardness and cyclic deformation behavior of electron beam welded dissimilar joints of Ti–6Al–4V and Ti17 (Ti–5Al–4Mo–4Cr–2Sn–2Zr) titanium alloys. The welding resulted in a significant microstructural change across the joint, with hexagonal close-packed (hcp) martensite α′ and orthorhombic martensite α″ in the fusion zone (FZ), α′ in the heat-affected zone (HAZ) of Ti–6Al–4V side, and coarse β in the HAZ of Ti17 side. A characteristic asymmetrical hardness profile across the dissimilar joint was observed with the highest hardness in the FZ and a lower hardness on the Ti–6Al–4V side than on the Ti17 side, where a soft zone was observed. The dissimilar joint exhibited a lower Young′s modulus and higher cyclic strain hardening exponent than both Ti–6Al–4V and Ti17 base metals (BMs), and had the monotonic and cyclic yield strengths lying in-between those of two BMs with higher values for Ti17 alloy. Both BMs and joint showed essentially symmetrical hysteresis loops and equivalent fatigue life, and exhibited cyclic stabilization at lower strain amplitudes up to 0.6%, while cyclic softening occurred after initial cyclic stabilization at higher strain amplitudes. The initial cyclic stabilization was shortened with increasing strain amplitude. In the Ti–6Al–4V BM fatigued at a high strain amplitude of 1.2%, a short initial cyclic hardening emerged, corresponding to the presence of twinning and its resistance to the dislocation movement. Fatigue failure of the dissimilar joint occurred in the HAZ of Ti17 side where the soft zone was present, with crack initiation from the specimen surface or near-surface defect and crack propagation characterized by typical fatigue striations.  相似文献   

3.
采用TIG焊接方法对Ti700sr高温钛合金板材进行了焊接,研究了接头的组织形貌、硬度分布及力学性能.结果表明,Ti700sr高温钛合金板材焊接后的接头成形良好,焊缝区组织由粗大的柱状晶及细长的针状α相构成,热影响区组织由细针状α和残余β相构成,热影响区析出相得到有效控制,相边界上无明显硅化物析出;焊接热影响区的硬度相...  相似文献   

4.
The aim of this study was to evaluate the influence of strain rate and temperature on the tensile properties, strain hardening behavior, strain rate sensitivity, and fracture characteristics of electron beam welded (EBWed) dissimilar joints between Ti–6Al–4V and Ti17 (Ti–5Al–4Mo–4Cr–2Sn–2Zr) titanium alloys. The welding led to significant microstructural changes across the joint, with hexagonal close-packed martensite (α′) and orthorhombic martensite (α″) in the fusion zone (FZ), α′ in the heat-affected zone (HAZ) on the Ti–6Al–4V side, and coarse β in the HAZ on the Ti17 side. A distinctive asymmetrical hardness profile across the dissimilar joint was observed with the highest hardness in the FZ and a lower hardness on the Ti–6Al–4V side than on the Ti17 side, where a soft zone was present. Despite a slight reduction in ductility, the yield strength (YS) and ultimate tensile strength (UTS) of the joints lay in-between the two base metals (BMs) of Ti–6Al–4V and Ti17, with the Ti17 alloy having a higher strength. While the YS, UTS, and Voce stress of the joints increased, both hardening capacity and strain hardening exponent decreased with increasing strain rate or decreasing temperature. Stage III hardening occurred in the joints after yielding. The hardening rate was strongly dependent on the strain rate and temperature. As the strain rate increased or temperature decreased, the strain hardening rate increased at a given true stress. The strain rate sensitivity evaluated via both common approach and Lindholm approach was observed to decrease with increasing true strain. The welded joints basically failed in the Ti–6Al–4V BM near the HAZ, and the fracture surfaces exhibited dimple fracture characteristics at different temperatures.  相似文献   

5.
Narrow-gap tungsten inert gas welding with in situ protective system is applied to 78-mm-thick Ti–6Al–4V alloy. The martensite basketweave microstructure is formed in fusion zone (FZ), and heat-affected zone (HAZ) near FZ consists of acicular martensite and a small portion of primary alpha phase. The HAZ near base metal (BM) consists of primary alpha and transformed beta phase. Microhardness values of FZ and HAZ are relatively higher, and peak values appear at HAZ near FZ. The mechanical heterogeneity is dependent on variation of beta phase and martensite, which in turn depend on specific thermal cycle(s). The average tensile strength reaches 783.3?MPa and is 91.2% of BM, which appears in the middle of the weld with orthogonal martensites.  相似文献   

6.
As a primary material of the thorium molten salt reactor(TMSR) that is a suitable candidate reactor of the Generation IV nuclear reactors, GH3535 superalloy was successfully welded. The effect of laser beam welding(LBW) on microstructure evolution of fusion zone(FZ) and heat affected zone(HAZ), such as element segregation, precipitate behavior and grain evolution, was investigated. The microhardness and tensile properties were tested and discussed. The results of microstructure evolution showed that a number of fine M_6C-y eutectic phases precipitated at solidification grain boundaries and interdendritic region in FZ. Compared to base metal zone(BMZ), the grain size of HAZ has no obvious change. While a few of M_6C-y eutectic phases were observed in partially melted zone(PMZ) of HAZ. The results of microhardness indicated that the hardness of FZ was higher than that of HAZ and BMZ. The results of tensile test showed that the ultimate tensile strength of joints at room temperature, 650 and 700?C were98%, 97% and 99% of that of BM, respectively. All the tensile specimens of joints failed in BMZ rather than in PMZ where M6 C carbides had been transformed into M_6C-y eutectic phases.  相似文献   

7.
In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the microstructure and mechanical properties of single-lap joints between DP780 and DP600. The results show that the weld joints consist of three regions including base metal (BM), heat affected zone (HAZ) and fusion zone (FZ). The grain size and martensite volume fractions increase in the order of BM, HAZ and FZ. The hardness in the FZ is significantly higher than hardness of base metals. Tensile properties of the joints were described in terms of the failure modes and static load-carrying capabilities. Two distinct failure modes were observed during the tensile shear test of the joints: interfacial failure (IF) and pullout failure (PF). The FZ size plays a dominate role in failure modes of the joints.  相似文献   

8.
A new type of Al–Zn–Mg–Cu alloy sheets with T6 temper were welded by laser beam welding (LBW). Microstructure characteristics and mechanical properties of the joints were evaluated. Results show that grains in the heat affected zone (HAZ) exhibit an elongated shape which is almost same as the base metal (BM). A non-dendritic equiaxed grain zone (EQZ) appears along the fusion line in the fusion zone (FZ), and grains here do not appear to nucleate epitaxially from the HAZ substrate. The FZ is mainly made up of dendritic equiaxed grains whose boundaries are decorated with continuous particles, identified as the T (AlZnMgCu) phase. Obvious softening occurs in FZ and HAZ, which mainly due to the changes of nanometric precipitates. The precipitates in BM are mainly η′, while plenty of GPI zones exist in FZ and HAZ adjacent to FZ, in the HAZ farther away from FZ, η phase appears. The minimum microhardness of the joint is always obtained in FZ at different times after welding. The ultimate tensile strength of the joint is 471.1 MPa which is 69.7% of that of the BM. Samples of the tensile tests always fracture at the FZ.  相似文献   

9.
《材料科学技术学报》2019,35(8):1681-1690
The heat-affected zone (HAZ) of electron beam welded (EBW) joint normally undergoes a unique heat-treating process consisting of rapid temperature rising and dropping stages, resulting in temperature-gradient in HAZ as a function of the distance to fusion zone (FZ). In the current work, microstructure, elements distribution and crystallographic orientation of three parts (near base material (BM) zone, mid-HAZ and near-FZ) in the HAZ of Ti-6Al-4V alloy were systematically investigated. The microstructure observation revealed that the microstructural variation from near-BM to near-FZ included the reduction of primary α (αp) grains, the increase of transformed β structure (βt) and the formation of various α structures. The rim-α, dendritic α and abnormal secondary α (αs) colonies formed in the mid-HAZ, while the “ghost” structures grew in the near-FZ respectively. The electron probe microanalyzer (EPMA) and electron back-scattered diffraction (EBSD) technologies were employed to evaluate the elements diffusion and texture evolution during the unique thermal process of welding. The formation of the various α structures in the HAZ were discussed based on the EPMA and EBSD results. Finally, the nanoindentation hardness of “ghost” structures was presented and compared with nearby βt regions.  相似文献   

10.
The purpose of this study was to evaluate microstructural and mechanical change of DP780 steel after tungsten inert gas (TIG) welding and the influence of notch locations on the fatigue crack growth (FCG) behavior. The tempering of martensite in the sub-critical heat affected zone (HAZ) resulted in a lower hardness (~ 220 HV) compared to the base material (~ 270 HV), failure was found to originate in the soft HAZ during tensile test. The fusion zone (FZ) consisted of martensite and some acicular ferrite. The joint showed a superior tensile strength with a joint efficiency of 94.6%. The crack growth path of HAZ gradually deviated towards BM due to the asymmetrical plastic zone at the crack tip. The FCG rate of the crack transverse to the weld was fluctuant. The Paris model can describe the FCG rate of homogeneous material rather well, but it cannot precisely represent the FCG rate of heterogeneous material. The fatigue fracture surface showed that the stable expanding region was mainly characterized by typical fatigue striations in conjunction with secondary cracks; the rapid expanding region contained quasi-cleavage morphology and dimples. However, ductile fracture mechanism predominated with an increasing stress intensity factor range (ΔK). The final unstable failure fractograph was subtotal dimples.  相似文献   

11.
对4mm厚T4003铁素体不锈钢进行搅拌摩擦焊接工艺实验,研究焊接参数对接头组织特征、硬度分布及常温和低温冲击韧性的影响。结果表明:接头搅拌区和热力影响区由铁素体和马氏体双相组织构成;接头搅拌区组织沿试样厚度方向存在非均质性,且随转速的降低及焊接速率的增加越发显著;转速从150r/min增加至250r/min,前进侧热力影响区组织呈现小梯度过渡趋势,无明显变形拉长特征。焊缝硬度分布相对均匀,其最高硬度为290HV,约为母材的1.87倍。焊接参数和温度对接头的冲击吸收功有较大影响:常温(20℃)下,热影响区为母材的90%~92%,搅拌区为母材的85%~103%;低温(-20℃)下,热影响区为母材的87%~97%,搅拌区为母材的82%~95%,表明焊缝区仍具有较好强韧匹配。  相似文献   

12.
Fatigue crack growth behaviours in different welding zones of laser beam welded specimens were investigated using central crack tension specimens for 6156 aluminium alloy under constant amplitude loading at nominal applied stress ratio R = 0.5, 0.06, ?1. The experimental results showed that base metal (BM) exhibited superior fatigue crack resistance compared to weld metal (WM) and heat‐affected zone (HAZ). Crack growth resistance of WM was the lowest. The exponent m values for BM and HAZ at different stress ratios are close and around 2.6, while m for WM at different stress ratio is around 4.7. The discrepancy between crack growth rates for WM and BM is more evident with increasing stress ratio, while it is a little change for HAZ and BM. Change of the microstructure in WM deteriorates the resistance of fatigue crack growth compared to BM. It was mainly due to grain boundary liquation and dissolving of second‐phase particles in the weld region. It was also found that the variety of fatigue crack resistance for different welding zones is in conformity with the change of hardness. BM with the highest hardness exhibited the maximum resistance for fatigue crack, and WM with the lowest hardness exhibited the minimum fatigue crack resistance.  相似文献   

13.
杨智华  杨尚磊  姜亦帅  王妍 《材料导报》2017,31(12):60-63, 72
采用光纤激光器对4mm厚的7075铝合金进行激光填丝焊接,对焊接接头的显微组织、相结构、断口形貌、力学性能进行观察和分析。结果表明:焊缝(FZ)边缘组织为柱状枝晶组织,焊缝中心为等轴晶组织;热影响区(HAZ)保留了母材(BM)的轧制长条状形态,但晶粒有所长大。母材的相组成主要为α-Al固溶体、S-Al_2CuMg强化相和η-MgZn_2强化相,焊缝无强化相析出。焊缝区硬度值为各区中最低,热影响区显微硬度呈阶梯式增长。焊接速度为2~4m/min的接头拉伸试样均在焊缝处断裂,抗拉强度最大为母材的67.5%。接头拉伸试样均出现了颈缩现象,断口由大量的等轴状韧窝构成,为韧性断裂。  相似文献   

14.
江畅  黄春平  夏春  柯黎明 《材料导报》2017,31(16):117-120
采用不同工艺参数对2 mm厚Ti40阻燃钛合金进行电子束焊接(EBW),通过金相分析、电子探针(EPMA)、室温拉伸以及显微硬度测试对Ti40阻燃钛合金电子束焊接接头的显微组织和力学性能进行分析.结果表明,焊缝中分布着晶粒内部有片层状组织析出的β柱状晶和少量等轴β晶粒,熔合线到焊缝中心晶粒逐渐细化,无明显热影响区.接头中易产生气孔、裂纹等缺陷,通过添加直线扫描波形能够有效地控制焊缝气孔缺陷,从而提高接头的强度.添加直线扫描波形电子束焊的Ti40阻燃钛合金的抗拉强度仍可达到917 MPa,断口呈现出脆性断裂与韧性断裂的混合特征,焊缝区的硬度高于母材,其最大值为376HV.  相似文献   

15.
Tensile and plain fatigue properties of β type titanium alloy, Ti–29Nb–13Ta–4.6Zr, which underwent various thermo-mechanical treatments, were investigated in order to judge its potential for biomedical applications.Microstructures of Ti–29Nb–13Ta–4.6Zr (TNTZ) aged directly at 723 K for 259.2 ks after cold rolling and TNTZ aged at 723 K for 259.2 ks after solution treatment are composed of precipitated α phase in β phase. While, microstructures of TNTZ aged directly at 598 K and 673 K for 259.2 ks after cold rolling and aged at 598 K and 673 K for 259.2 ks after solution treatment are composed of precipitated ω phase, and precipitated α and ω phases in β phase, respectively. Tensile strength of aged TNTZ after solution treatment and aged TNTZ after cold rolling decreases with increasing aging temperature although the elongation shows the reverse trend. TNTZ composed of ω phase or ω and α phases in β phase shows the tensile strength of around 1000 MPa or more. Young's moduli of aged TNTZ after solution treatment and aged TNTZ after cold rolling decrease with increasing aging temperature. TNTZ conducted with solution treatment has the lowest Young's modulus of around 60 GPa. Fatigue strengths of aged TNTZ after solution treatment and aged TNTZ after cold rolling increase with increasing aging temperature. In particular, TNTZ aged directly at 723 K after cold rolling shows the greatest fatigue strength in both low cycle fatigue life and high cycle fatigue life regions, and the fatigue limit, which is around 770 MPa, is nearly equal to that of hot-rolled Ti–6Al–4V ELI conducted with aging, which is one of representative α + β type titanium alloys for biomedical applications.  相似文献   

16.
The microstructural characterizations, micro‐hardness measurements and fatigue tests of B1500HS steel spot welded tensile‐shear specimens were performed. The high hardness values of base material (470 HV) and nugget (515 HV) are closely related to the dominant formation of martensitic microstructures, while the occurrence of soft zone is the result of the formation of ferrite phases in inter‐critical heat‐affected zone (HAZ), as well as martensite tempering in sub‐critical HAZ. The fatigue failure modes involve the fracture along the circumference or along the direction of width. The fatigue property of spot welded B1500HS is found to be better than that of spot welded M190 because of the thicker sheet and suitable nugget size, which follows the standard rule of 5t0.5, where t is the sheet thickness.  相似文献   

17.
Abstract

The post-weld heat treatment (PWHT) cracking in autogenous gas tungsten arc (GTA) welded Inconel 738LC superalloy, which was given two different preweld heat treatments, was studied. One of the preweld heat treatments, designated as SHT, consisted of solution heat treatment at 1120°C for 2 h in vacuum followed by argon quenching. The second preweld heat treatment, designated as UMT, consisted of solution treatment at 1120°C for 2 h followed by air cooling and then aging at 1025°C for 16 h followed by water quenching. The welded specimens were given the same conventional PWHT, which consisted of SHT at 1120°C for 2 h in vacuum followed by argon quenching and subsequent aging at 845°C for 24 h in vacuum. Microstructural examination of the welded SHT and UMT treated material showed that intergranular microfissuring occurred during welding only in the heat affected zone (HAZ) with some cracks extending into the adjoining base metal (BM), whereas after the PWHT microfissures were observed in the fusion zone (FZ), HAZ and the BM far removed from the HAZ. The crack width ranged from 5 to 10 μm in the PWHT specimens as compared with 1–2 μm in the as welded sections. Although similar type of cracks was observed in samples given the two preweld heat treatments, the UMT preweld heat treatment was found to result in a significant reduction in average total crack length and average crack length, both during welding and during the subsequent PWHT. After PWHT, SHT samples had ~43% more cracking than the UMT samples. It is suggested that a larger particle size of γ′ precipitates in the HAZ and a smaller size of HAZ in the as welded samples, combined with a softer BM of the UMT material (hardness 280 ± 12 HV10, as compared with 380 ± 10 HV10 of the SHT material) resulted in an improved capability of the material to absorb the strain–aging stresses, and hence a reduced incidence of cracking during PWHT.  相似文献   

18.
In this paper, the small fatigue crack behavior of titanium alloy TC4 at different stress ratios was investigated. Single‐edge‐notch tension specimens were fatigued axially under a nominal maximum stress of 370 MPa at room temperature. Results indicate that fatigue cracks in TC4 initiate from the interface between α and β phases or within α phase. More than 90% of the total fatigue life is consumed in the small crack initiation and growth stages. The crack growth process of TC4 can be divided into three typical stages, ie, microstructurally small crack stage, physically small crack stage, and long crack stage. Although the stress ratio has a significant effect on the total fatigue life and crack initiation life at constant σmax, its effect on crack growth rate is indistinguishable at R = ?0.1, 0.1, and 0.3 when crack growth rate is plotted as a function of ?K.  相似文献   

19.
对6005A-T6铝合金挤压型材进行焊速为1000 mm/min的搅拌摩擦高焊速焊接,研究了对接面机械打磨对接头组织和力学性能的影响.结果 表明,与生产中常用的焊前打磨处理相比,尽管对接面未机械打磨的接头焊核区的"S"线更明显,但是两种接头的硬度分布和拉伸性能相当,拉伸时都在最低硬度区即热影响区断裂.高周疲劳实验结果表...  相似文献   

20.
T92/Super304H dissimilar steel weld joints, fabricated through a gas tungsten arc welding (GTAW) technique using a Ni-based welding wire of ERNiCrMo-3, were aged at 650 °C for time up to 3000 h. Microstructures, fractographies and mechanical properties of the joints were then investigated. The results show that as the aging time increased, in the T92 side heat-affected zone (HAZ) and base metal (BM), the second-phase particles aggregate and coarsen along the austenite grain boundaries/in the austenite grains. In the Super304H side HAZ and BM, the growth of the austenite grains and that of the second-phase particles are slight. The fracture positions of the aged joints are always in the T92 BM. The tensile strengths and the hardness values of the joints drop firstly, then rise, and finally tend to be stable. The impact toughness values of the joints are monotonously decreases with the ageing time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号