首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Oxygen-free copper(Cu) was successfully joined to carbon-fiber-reinforced thermoplastic(CFRTP,polyamide 6 with 20 wt% carbon fiber addition) by friction lap joining(FLJ) at joining speeds of 200–1600 mm/min with a constant rotation rate of 1500 rpm and a nominal plunge depth of 0.9 mm.It is the first time to report the joining of CFRTP to Cu by FLJ. As the joining speed increased, the tensile shear force(TSF) of joints increased first, and decreased thereafter. The maximum TSF could reach 2.3 kN(15 mm in width). Hydrogen bonding formed between the amide group of CFRTP and the thin Cu_2O layer on the Cu surface, which mainly contributed to the joint bonding. The influence factors of the TSF of the joints at different joining speeds were discussed. The TSF was mainly affected by the joining area, the degradation of the plastic matrix and the number and the size of bubbles. As the joining speed increased,the influence factors varied as follows: the joining area increased first and then decreased; the degradation of the plastic matrix and the number and the size of bubbles decreased. The maximum TSF was the comprehensive result of the relatively large joining area, small degradation of the plastic matrix and small number and sizes of bubbles.  相似文献   

2.
The effects of friction spot joining process parameters on the bonding area and mechanical performance of single lap joints were investigated using full-factorial design of experiments and analysis of variance. On one hand, the main process parameters with significant influence on the bonding area were joining pressure, tool rotational speed and joining time. On the other hand, tool rotational speed and joining pressure displayed the highest influence on the lap shear strength of the joints followed by tool plunge depth, whereas the joining time was not statistically significant. The interaction between the rotational speed and joining time was the only interaction with a significant effect on the mechanical performance. Joints with ultimate lap shear forces varying between 1698 ± 92 N and 2310 ± 155 N were obtained. It was observed that generally a larger bonding area as a result of higher heat input leads to an increased mechanical performance of the joints. The generated regression model by the analysis of variance was used to identify an optimized set of parameters for increasing the lap shear strength of the joints to 2280 ± 88 N. Furthermore, the process temperature was monitored, which varied in the range of 370–474 °C.  相似文献   

3.
A carbon-fiber–reinforced thermoplastic (polyamide 6 with 20 wt.% carbon fiber addition) and an aluminum alloy (A5052) were joined using friction lap joining. The joint characteristics were evaluated to investigate the effects of A5052 surface treatments and the joining speed on the joint properties. Carbon-fiber–reinforced thermoplastic and A5052 were joined via an interfacial magnesium oxide layer. Surface grinding of the A5052 generated the aluminum hydroxide on the alloy surface and increased the tensile shear strength of the joint. The tensile shear strength increased as the joining speed increased from 100 to 1600 mm min1, and decreased thereafter.  相似文献   

4.
In this study, an experimental investigation has been carried out on microstructure and mechanical properties of friction stir welded copper/brass dissimilar joints. Effect of axial tool force to welding quality has been investigated under obtained optimal tool rotation rate and tool traverse speed conditions. The tool for the dissimilar copper/brass friction stir welding manufactured from X155CrMoV12–1 cold work tool steel with material number of 1.2379. The friction stir welding quality was investigated by welding surface inspections, microstructural studies, micro hardness measurements and tensile tests. The experimental studies have shown that constant axial tool force during pre‐heating and during welding process are very important. As a result, by using 2.5–3 kN of axial tool force during pre‐heating and 5.5 kN of axial tool force during welding process, copper/brass dissimilar joints with well appearance and higher mechanical strength can be obtained.  相似文献   

5.
The microstructures and mechanical properties of friction stir welded Inconel 600 and SS 400 lap joints were evaluated in this study. Friction stir welding was carried out at a tool rotation speed of 200 rpm and a welding speed of 100 mm/min. Application of friction stir welding was notably effective in reducing the grain size of the stir zone, as a result, the average grain size of Inconel 600 was reduced from 20 μm in the base material to 8.5 μm in the stir zone. The joint interface between Inconel 600 and SS 400 was soundly welded without voids and cracks, and MC carbides with a size of 50 nm were partially formed in the region of the lap joint interface in Inconel 600. In addition, a hook from SS 400 was formed on the advancing side of the Inconel 600 alloy, which directly affected an increase in the peel strength of the weld. In this study, we systematically discussed the effect of friction stir welding on the evolution of the microstructures and mechanical properties of friction stir lap jointed Inconel 600 and SS 400.  相似文献   

6.
The mechanical performance and microstructure of friction riveted metallic-insert joints made of polyether ether ketone composite reinforced with 30% short carbon fibers and titanium grade 3 was studied. The metallic-insert joints reached a maximal pull-out tensile force of 10.6 kN, which corresponds to 100% of the titanium base material strength. It was shown the pull-out force increased as the rivet tip widened. Frictional heat during the process was mainly generated by the friction between the tip of the rivet and the composite substrate in the friction zone. Microstructural analyses of the metallic part of the joint revealed the presence of different microstructural zones: a friction zone, and two thermomechanically affected zones 1 and 2. Based on the composite morphology, the composite part of the joint was categorized into three different zones: the stir zone, a thermomechanically affected zone and a heat-affected zone. A study of the material flow showed that the flow of the composite was strongly affected by the rotation and axial movement of the rivet.  相似文献   

7.
In an RC building subjected to lateral loads, the beam–column joints constitute one of the critical regions. In existing frames, which were not adequately designed, a practical way of controlling plastic hinging and implement the strong-column weak-beam concept is through the use of a web-bonded FRP retrofitting system. This paper presents the results of an experimental and numerical study carried out in order to evaluate the ability of CFRP sheets in preventing the plastic hinge formation at the face of the column in exterior RC joints. Seven scaled-down RC exterior joints of a typical Ordinary Moment Resisting Frame are tested under moderately monotonic/cyclic loads. Two specimens are used as control while the other five are CFRP-strengthened/repaired of different lengths and thicknesses. The results show that carbon fibre sheets can effectively relocate the plastic hinge away from the face of the column. Non-linear numerical results using ANSYS are also presented and discussed.  相似文献   

8.
Cold metal transfer (CMT) welding has been successfully used to weld dissimilar metals widely. However, a few investigations were carried out on the lap welding of commercially pure titanium TA2 to pure copper T2 with ERCuNiAl copper wire by CMT technique. In this paper, the affected mechanism of lapped location between the two metals on the microstructure and tensile shear strength of joints was revealed. The results indicated that satisfactory lapped joints between commercially pure titanium TA2 and pure copper T2 could be achieved by CMT welding method. A layer of intermetallic compounds (IMCs), i.e. Ti2Cu, TiCu and AlCu2Ti presented in titanium-weld interface, and the weld metal was composed of α-Cu solid solution and Ti–Cu–Al–Ni–Fe multi-phase. The two joints had almost same tensile shear strength, 192.5–197.5 N/mm, and fractured in the heat affected zone (HAZ) of Cu with plastic fracture mode during tensile shear tests.  相似文献   

9.
Widespread use of aluminum alloys for the fabrication of car body parts is conditional to the use of appropriate welding methods, especially if dissimilar welding must be performed with automotive steel grades. Friction stir welding (FSW) is considered to be a reasonable solution to obtain sound aluminum-steel joints. In this context, this work studies the effects of tool position and force control in dissimilar friction stir welding of AA6061 aluminum alloy on DC05 low carbon steel in lap joint configuration, also assessing proper welding parameter settings. Naked eye and scanning electron microscopy (SEM) have been used to detect macroscopic and microscopic defects in joints, as well as to determine the type of intermixture between aluminum and steel. The joint strength of sound joints has been assessed by shear tension test. Results point out that tool force control allows for obtaining joints with better quality and strength in a wider range of process parameters. A process window has been determined for tool force conditions to have joints with adequate strength for automotive purposes.The full text can be downloaded at https://link.springer.com/content/pdf/10.1007%2Fs40436-019-00290-1.pdf  相似文献   

10.
Friction stir welding of AA5456 aluminum alloy in lap joint configuration is with two different tempers, T321 and O, and different thicknesses, 5 mm and 2.5 mm was investigated. The influences of tool geometry and various rotational speeds on macrostructure, microstructure and joint strength are presented. Specifically, four different tool pin profiles (a conical thread pin, a cylindrical–conical thread pin, a stepped conical thread pin and Flared Triflute pin tool) and two rotational speeds, 600 and 800 rpm, were used. The results indicated that, tool geometry influences significantly material flow in the nugget zone and accordingly control the weld mechanical properties. Of particular interest is the stepped conical threaded pin, which is introduced for the first time in the present investigation. Scanning electron microscopy investigation of the fracture location of samples was carried out and the findings correlated with tool geometry features and their influences on material flow and tension test results. The optimum microstructure and mechanical properties were obtained for the joints produced with the stepped conical thread pin profile and rotational speed of 600 rpm. The characteristics of the nugget zone microstructure, hooking height, and fracture location of the weld joints were used as criteria to quantify the influence of processing conditions on joint performance and integrity. The results are interpreted in the framework of physical metallurgy properties and compared with published literature.  相似文献   

11.
Hook defect (HD) seriously decreases the mechanical properties of friction stir spot welded (FSSW) joints. In this study, two methods were therefore used to eliminate the HD in pinless FSSW joints. The one is changing welding parameters such as rotating speed and dwell time. The other one is FSSW plus subsequent friction stir welding (FSSW-FSW), which is an innovative method proposed in this study. Experimental results showed that the HD in pinless FSSWed AA2024 joints was successfully eliminated by using FSSW-FSW, not by changing process parameters. The joints without HD exhibited a tensile–shear load of as much as 12 kN, which was higher than that of 6.9 kN in the joints with HD. Furthermore, it was proved that the tensile–shear load is not greatly improved only by increasing the nugget zone when HD still existed in the FSSW joints. In addition, the fracture morphology analysis demonstrated that the shear fracture of the FSSW-FSW joints took place along the boundary between the upper and lower sheets through the weld nugget, and the faying surface between the two sheets was completely sheared off.  相似文献   

12.
Plastic bottles are sensitive to lateral wall deformation (panelling) owing to the pressure difference between the inside and the outside. Parameters involved in plastic bottle deformation have been reviewed. A quick laboratory test for measuring bottle resistance to deformation was set up and evaluated vs. real life conditions. Round 1–l bottles with various geometries and wall thickness distributions were designed, produced and tested.  相似文献   

13.
Mechanical properties of copper to titanium joined by friction welding   总被引:2,自引:0,他引:2  
This paper describes a fundamental investigation of friction welding pure copper to titanium. Friction welding was performed using a brake type friction welder. The effect of friction time and upset pressure on the mechanical and metallurgical properties were evaluated. Under constant upset pressure, the tensile strength made little difference with an increase in friction time, whereas at the constant friction time, the tensile strength increased with increasing upset pressure. Thus, the upset pressure plays a major role over the friction time and friction pressure on tensile strength. Though Cu3Ti intermetallic compound is formed at the copper/titanium interface during welding, the tensile strength of welded joint is not affected. It may be due to the thickness of intermetallic compound layer at interface being very thin and scattered. The tensile fracture of the welded joint occurred in copper side near the interface.  相似文献   

14.
The effects of surface treatment techniques like laser and shot peening on the mechanical properties were investigated for friction stir welded 2195 aluminum alloy joints. The loading in the tensile specimens was applied in a direction perpendicular to the weld direction. The peening effects on the local mechanical properties through the different regions of the weld were characterized using a digital image correlation technique assuming an iso-stress condition. This assumption implies that the stress is uniform over the cross-section and is equal to the average stress. The surface strain and average stress were used giving an average stress–strain curve over the region of interest. The extension of the iso-stress assumption to calculate local stress–strain curves in surface treated regions is a novel approach and will help to understand and improve the local behavior at various regions across the weld resulting in a sound welding process. The surface and through-thickness residual stresses were also assessed using the X-ray diffraction and the contour methods. The laser peened samples displayed approximately 60% increase in the yield strength of the material. In contrast, shot peening exhibited only modest improvement to the tensile properties when compared to the unpeened FSW specimens. The result that laser peening is superior to shot peening because of the depth of penetration is original since this superiority has not been presented before regarding mechanical properties performance.  相似文献   

15.
5A02 aluminum alloy and pure copper were joined by friction stir welding (FSW). A defect-free joint was obtained when one of process parameters, i.e. the traverse speed was lowered from 40 mm/min to 20 mm/min. A good mixing of Al and Cu was observed in the weld nugget zone (WNZ). A large amount of fine Cu particles were dispersed in the upper part of the WNZ producing a composite-like structure. In the lower part, nano-scaled intercalations were observed and identified by transmission electron microscopy (TEM). These layered structures were subsequently confirmed as Al4Cu9 (γ), Al2Cu3 (ε), Al2Cu (θ), respectively. Formation of these microstructures caused an inhomogeneous hardness profile. Particularly, a distinct rise in hardness was noticed at the Al/Cu interface. Excellent metallurgical bonding between Al and Cu gave rise to good behaviors in the tensile and bending strength.  相似文献   

16.
为获得优异力学性能的复合材料,选用石墨烯作为增强体.本文采用粉末冶金方法,经高能球磨法、冷压、烧结、热压和热挤压制备了AZ31镁合金及石墨烯(GNPs)增强AZ31镁基复合材料棒状试样,通过光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射(XRD)和室温拉伸、压缩表征了该材料的组织和力学性能.结果表明:制备的复合材料及基体中生成了Mg_(17)Al_(12)和MgO,加入GNPs后复合材料的屈服强度与维氏硬度都优于基体材料;加入GNPs质量分数为0.5%和1.0%的GNPs复合材料分别比基体屈服强度增加13.2%和14.2%(258和259 MPa),显微维氏硬度分别增加11.4%和14.3%(78和80 HV),主要的强化机制为载荷转移强化、奥罗万强化、热错配强化,但材料的拉伸延伸率分别降低到3.9%和4.3%,比基体分别降低了38%和32%,材料的致密度分别为99.6%、98.5%、97.8%,随着GNPs的增加,致密度降低;GNPs的加入未改变材料的断裂方式,材料的断裂方式均主要为脆性断裂;GNPs的添加使复合材料的基面{0002}织构弱化,从而降低材料的屈服不对称性.  相似文献   

17.
Series of welds were made by friction stir welding (FSW) with various backplates made out of materials ranging from low diffusivity granite to high diffusivity copper in order to reveal the effect of backplate diffusivity on the joint microstructure and properties. The temperature, microstructure, microhardness and tensile properties of joints were compared and discussed. Results show that the backplate with high diffusivity effectively decreases the heat input to the workpiece during FSW. With decreasing the backplate diffusivity the sizes of equiaxed recrystallized grains in the nugget zone increase obviously, while the hardness of the nugget zone also increases a little. The interface between the thermo-mechanically affected zone and nugget zone at the retreating side disappears under the granite backplate. Moreover, the ductility of the joint is more excellent under the copper backplate, but under the granite backplate the failure has mixed fracture characteristics of quasi-cleavage and dimples.  相似文献   

18.
The joint properties of dissimilar formed Al alloys, cast Al alloy and wrought Al alloy, were examined with various welding conditions. Friction stir welding method could be applied to join dissimilar formed Al alloys which had different mechanical properties without weld zone defects under wide range of welding condition.The weld zone of dissimilar formed Al alloy exhibited the complex structure of the two materials and mainly composed of the retreating side material.The mechanical properties also depended on the dominant microstructure of the weld zone with welding conditions. The different mechanical properties of the weld zone with welding conditions were related to the behavior of the precipitates of wrought Al alloy and Si particles of cast Al alloy. The higher mechanical properties of the weld zone were acquired when a relatively harder material, wrought Al alloy, was fixed at the retreating side.  相似文献   

19.
New trends in product design require the use of modularity as key feature aimed to improve functional performance and the generation of open architecture products. For mechanical systems, one of the challenges during early design stages of these products involves the proper selection of joining methods among their constructive components. A robust joint selection process must consider product requirements, life cycle analysis and eventual procedures for assembly and disassembly. However, the general approach towards a Design-for-Assembly (DFA)/Design-for-Disassembly (DFD) only considers design, manufacturing and in some cases final disposal stage. Additionally, most of the works found in the literature are merely focused on assembly operations, disregarding economic and environmental benefits from optimising disassembly complexity. Herein, a functional characterisation of mechanical joint methods for the assembly and disassembly activities that take place throughout the product life cycle is proposed, focusing on open architecture products. Additionally, a classification of joining methods, a joint complexity metric valuation and a selection process are proposed for the conceptual design stage. The approach integrates both DFA and DFD principles in a formal methodology. The proposed selection roadmap can be implemented to increase product sustainability positively regarding resources optimisation, operational time and costs in reuse, remanufacturing and recycling tasks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号