首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
A simple model that is applicable to Spindt-type emitter triodes is presented. Experimentally, it has been observed that the gate current at zero collector voltage follows the same Fowler-Nordheim law as the collector current at high collector voltage, and that for low emission current densities, the sum of gate and collector currents is constant for any collector voltage and is given by the Fowler-Nordheim current IFN. Based on these observations, a simple model has been developed to calculate the I-V characteristics of a triode. By measuring the Fowler-Nordheim emission, emission area and field enhancement can be obtained assuming a value for the barrier height. Incorporating the gate current, the collector current can be calculated from Ic=IFN-Ig as a function of collector voltage. The model's accuracy is best at low current density. At higher emission currents, deviations occur at low collector voltages because the constancy of gate and collector currents is violated  相似文献   

2.
The electrical transport properties of β-SiC/Si heterojunctions were investigated using current-voltage (I-V) and capacitance-voltage (C-V) characteristics. The heterojunctions were fabricated by growing n-type crystalline β-SiC films on p-type Si substrates by chemical vapor deposition (CVD). The I-V data measured at various temperatures indicate that at relatively high current, the heterojunction forward current is dominated by thermionic emission of carriers and can be expressed as exp(-qVbi/kT ) exp(VkT), where Vbi is the built-in voltage of the heterojunction and η(=1.3) is a constant independent of voltage and temperature. At lower current, defect-assisted multitunneling current dominates. The effective density of states and the density-of-states effective mass of electrons in the conduction band of SiC are estimated to be 1.7×1021 cm -3 and 0.78m0, respectively. This study indicates that the β-SiC/Si heterojunction is a promising system for heterojunction (HJ) devices such as SiC-emitter heterojunction bipolar transistors (HBTs)  相似文献   

3.
A technique has been developed to differentiate between interface states and oxide trapped charges in conventional n-channel MOS transistors. The gate current is measured before and after stress damage using the floating-gate technique. It is shown that the change in the Ig-Vg characteristics following the creation and filling of oxide traps by low gate voltage stress shows distinct differences when compared to that which occurs for interface trap creation at mid gate voltage stress conditions, permitting the identification of hot-carrier damage through the Ig- Vg characteristics. The difference is explained in terms of the changes in occupancy of the created interface traps as a function of gate voltage during the Ig-V g measurements  相似文献   

4.
A metal-base transistor of the MOMOM type with large current gain is reported. It uses Bi(Ba,Rb)O3 and oxide semiconductors. I-V curves for a Bi(Ba,Rb)O3 base transistor in the common-base configuration were studied from room temperature to 30 K. Current gain α~1 was obtained at 50 K. Transport behavior is determined by analysis of threshold voltages and derivatives dIc/dVcb  相似文献   

5.
The effects of traps in GaAs MESFETs are studied using a pulsed gate measurement system. The devices are pulsed into the active region for a short period (typically 1 μs) and are held in the cutoff region for the rest of a 1-ms period. While the devices are on, the drain current is sampled and a series of pulsed gate I-V curves are obtained. The drain current obtained under the pulsed gate conditions for a given VGS and VDS gives a better representation of the instantaneous current for a corresponding Vgs and Vds in the microwave cycle because of the effects of traps. The static and pulsed gate curves were used in a nonlinear time-domain model to predict harmonic current. The results showed that analysis using pulsed gate curves yielded better predictions of harmonic distortion than analysis based on conventional state I-V curves under large-signal conditions  相似文献   

6.
Simulation of hot-electron trapping and aging of nMOSFETs   总被引:3,自引:0,他引:3  
An analysis of the degradation of 1-μm-gate-length nMOSFET operating under normal biasing conditions at room temperature is reported. A physical model of hot-electron trapping in SiO2 is developed and is used with a two-dimensional device simulator (PISCES) to simulate the aging of the device under normal biasing conditions. The initial degradation takes place near the high-field drain region and spreads over a long time toward the source. The degraded I-V characteristics of the MOSFET exhibit a shift of the pinchoff voltage and a compression of the transconductance, for forward and reverse operation, respectively. The simulated degradation qualitatively agrees with reported experimental data. Large shifts of the MOSFET threshold voltage for small drain voltages result as the degradation is spreading toward the source. An inflection point arises for low gate and drain voltages in the drain I-V characteristics of the MOSFET. This inflection point originates when the pinchoff of the channel-induced trapped-electron charge is overcome by the drain voltage; the drain acts as a second gate (short-channel effect). The estimation of the device's lifetime by simulated aging is proposed  相似文献   

7.
It is reported that fluorine can jeopardize p+-gate devices under moderate annealing temperatures. MOSFETs with BF2 or boron-implanted polysilicon gates were processed identically except at gate implantation. Evidence of boron penetration through 12.5-nm oxide and a large quantity of negative charge penetration (10 12 cm-2) by fluorine even at moderate annealing conditions is reported. The degree of degradation is aggravated as fluorine dose increases. A detailed examination of the I-V characteristics of PMOSFET with fluorine incorporated p+-gate revealed that the long gate-length device had abnormal abrupt turn-on Id-Vg characteristics, while the submicrometer-gate-length devices appeared to be normal. The abnormal turn-on Id-Vg characteristics associated with long-gate-length p+-gate devices vanished when the device was subjected to X-ray irradiation and/or to a high-voltage DC stressing at the source/drain. The C-V characteristics of MOS structures of various gate dopants, processing ambients, doping concentrations, and annealing conditions were studied. Based on all experimental results, the degradation model of p+-gate devices is presented. The incorporation of fluorine in the p+ gate enhances boron penetration through the thin gate oxide into the silicon substrate and creates negative-charge interface states. The addition of H/OH species into F-rich gate oxide will further aggravate the extent of F-enhanced boron penetration by annealing out the negative-charge interface states  相似文献   

8.
Temperature-dependent measurements from 25 to 125°C have been made of the DC I-V characteristics of HBTs with GaAs and In0.53Ga0.47As collector regions. It was found that the GaAs HBTs have very low output conductance and high collector breakdown voltage BVCEO>10 V at 25°C, which increases with temperature. In striking contrast, the In0.53Ga0.47As HBTs have very high output conductance and low BVCEO~2.5 V at 25°C, which actually decreases with temperature. This different behavior is explained by the >104 higher collector leakage current, ICO, in In0.53Ga0.47As compared to GaAs due to bandgap differences. It is also shown that device self-heating plays a role in the I-V characteristics  相似文献   

9.
Dependence of ionization current on gate bias in GaAs MESFETs   总被引:1,自引:0,他引:1  
The nonmonotonic behavior of gate current Ig as a function of gate-to-source voltage Vgs is reported for depletion-mode double-implant GaAs MESFETs. Experiments and numerical simulations show that the main contribution to Ig (in the range of drain biases studied) comes from impact-ionization-generated holes collected at the gate electrode, and that the bell shape of the Ig(Vgs) curve is strongly related to the drop of the electric field in the channel of the device as Vgs is moved towards positive values  相似文献   

10.
The 1/f noise in normally-on MODFETs biased at low drain voltages is investigated. The experimentally observed relative noise in the drain current SI/I2 versus the effective gate voltage VG=VGS-Voff shows three regions which are explained. The observed dependencies are SI/I2VG m with the exponents m=-1, -3, 0 with increasing values of VG. The model explains m =-1 as the region where the resistance and the 1/f noise stem from the 2-D electron gas under the gate electrode; the region with m=0 at large VG or VGS≅0 is due to the dominant contribution of the series resistance. In the region at intermediate VG , m=-3, the 1/f noise stems from the channel under the gate electrode, and the drain-source resistance is already dominated by the series resistance  相似文献   

11.
The evolution of the gate current-voltage (Ig- Vgs) characteristics of n-MOSFETs induced by DC stresses at different gate voltage over drain voltage (Vds ) ratios is studied by the floating-gate (FG) measurement technique. It is shown that the Ig-Vgs curves are always lowered after aging, and that the kinetics are dependent on the aging conditions. A time power law is representative of the Vgs=Vds case. It is demonstrated that electron traps are created in the oxide by both hot-hole and hot-electron injection stresses. They are not present in the devices before aging. They can be easily charged and discharged by short electron and hole injections, respectively  相似文献   

12.
Electrical and reliability characteristics of diagonally shaped n-channel MOSFETs have been extensively investigated. Compared with the conventional device structure, diagonal MOSFETs show longer device lifetime under peak Isub condition (Vg =0.5 Vd). However, in the high-gate-bias region (Vg=Vd), diagonal MOSFETs exhibit a significantly higher degradation rate. From the Isub versus gate voltage characteristics, this larger degradation rate under high gate bias is concluded to be due mainly to the current-crowding effect at the drain corner. For a cell-transistor operating condition (Vg>Vd), this current-crowding effect in the diagonal transistor can be a serious reliability concern  相似文献   

13.
Hot-carrier stressing was carried out on 1-μm n-type MOSFETs at 77 K with fixed drain voltage Vd=5.5 V and gate voltage Vg varying from 1.5 to 6.5 V. It was found that the maximum transconductance degradation ΔGm and threshold voltage shift ΔVt, do not occur at the same Vg. As well, ΔKt is very small for the Vg <Vd stress regime, becomes significant at VgVd, and then increases rapidly with increasing Vg, whereas ΔGm has its maximum maximum in the region of maximum substrate current. The behavior is explained by the localized nature of induced defects, which is also responsible for a distortion of the transconductance curves and even a slight temporary increase in the transconductance during stress  相似文献   

14.
An analytical current-voltage (I-V) model for planar-doped HEMTs is developed. This compact model covers the complete range of I-V characteristics, including the current saturation region and parasitic conduction in the electron-supplying layer. Analytical expressions for the small-signal parameters and current-gain cutoff frequency are derived from the I-V model. Modeling results for a 0.1-μm-gate planar-doped AlInAs-GaInAs HEMT show excellent agreement with measured characteristics. Threshold voltages and parasitic conduction in planar-doped and uniformly doped HEMTs are also compared and discussed  相似文献   

15.
The device consists primarily of several molecular-beam-epitaxy (MBE-) grown GaAs/(AlGa)As resonant tunneling diodes connected in parallel. This device exhibits multiple peaks in the I-V characteristic. When a load resistor is connected, the circuit can be operated in a multiple stable mode. With this concept, implementation of three-state and four-state memory cells are made. In the three-state case the operating points at voltages V0=0.27 V , V1=0.42 V, and V2=0.53 V represent the logic levels 0, 1, and 2. Similarly for the four-state memory cell the logic levels voltages are V0=0.35 V, V1=0.42 V, V2=0.54 V, and V 3=0.59 V. A suggestion of an integrated device structure using this concept is also presented  相似文献   

16.
The fabrication of a silicon heterojunction microwave bipolar transistor with an n+ a-Si:H emitter is discussed, and experimental results are given. The device provides a base sheet resistance of 2 kΩ/□ a base width 0.1 μm, a maximum current gain of 21 (VCE=6 V, Ic=15 mA), and an emitter Gummel number G E of about 1.4×1014 Scm-4. From the measured S parameters, a cutoff frequency ft of 5.5 GHz and maximum oscillating frequency fmax of 7.5 GHz at VCE=10 V, Ic=10 mA are obtained  相似文献   

17.
A unified and process-independent MOSFET model for accurate prediction of the I-V characteristics and the threshold voltages of narrow-gate MOSFETs is discussed. It is based on several enhancements of the SPICE2 LEVEL3 MOS model and the author's previous subthreshold I-V model. The expressions achieved for the drain current hold in the subthreshold, transition, and strong inversion regions. A continuous model is proposed for the transition region, using a scheme that ensures that both the current and conductance are continuous and will not cause convergence problems for circuit simulation applications. All of the modeled parameters are taken from experimentally measured I-V characteristics and preserve physical meaning. Comparisons between the measured and modeled I-V characteristics show excellent agreement for a wide range of channel widths and biases. The model is well suited for circuit simulation in SPICE  相似文献   

18.
The authors report on the off-state gate current (Ig ) characteristics of n-channel MOSFETs using thin nitrided oxide (NO) gate dielectrics prepared by rapid thermal nitridation at 1150°C for 10-300 s. New phenomena observed in NO devices are a significant Ig at drain voltages as low as 4 V and an Ig injection efficiency reaching 0.8, as compared to 8.5 V and 10-7 in SiO2 devices with gate dielectrics of the same thickness. Based on the drain bias and temperature dependence, it is proposed that Ig in MOSFETs with heavily nitrided oxide gate dielectrics arises from hot-hole injection, and the enhancement of gate current injection is due to the lowering of valence-band barrier height for hole emission at the NO/Si interface. The enhanced gate current injection may cause accelerated device degradation in MOSFETs. However, it also presents potential for device applications such as EPROM erasure  相似文献   

19.
The light-to-current (L-I) and light-to-voltage (L-V) differential nonlinearities in the simple network of a customary LED and an external resistor R in series are analyzed and calculated theoretically and compared with experimental data. Particular emphasis is placed on the influence of the log-arithmetic slope ν of the L-I characteristic and the bias current I upon the ratio of the corresponding nonlinearity parameters. It is thus deduced that, for a given optical power P, over superlinear portions of the L-I curve (ν>1) the L-I linearity is typically better than its corresponding L-V linearity. On the contrary, when the L-I dependence is sublinear (ν<1) the voltage driving scheme may ensure for the R-LED network, or the LED alone, a local L-V response much more linear than the L-I response, provided that appropriate (optimum) I and/or R values are chosen  相似文献   

20.
Hydrogen annealing at 700-1100°C for 0-300 s has been combined with SiO2 formation by rapid thermal processing (RTP). The SiO2 films formed with the above processes were evaluated by C-V and I-V measurements and by time-dependent dielectric breakdown (TDDB) tests. These films provide longer time to breakdown andless positive charge generation than SiO2 films formed without H2 annealing. In particular, the SiO2 formation-H2 annealing SiO 2 formation process is quite effective in improving the dielectric strength of the thin RTP-SiO2 film  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号