共查询到18条相似文献,搜索用时 62 毫秒
1.
本文研究小周期结构Helmholtz方程的多尺度计算。我们用各向异性多尺度方法(HMM)求解小周期结构Helmholtz问题。借助于渐近分析技术,在对HMM方法深入分析的基础上,我们给出了精确与HMM方法近似解之间的误差估计,并讨论和分析了利用微结构信息校正HMM逼近解的技巧。最后,我们用数值例了验证了理论结果的正确性。 相似文献
2.
3.
利用渐近展开和均匀化思想讨论了小周期复合材料的波传播问题,得到了高阶振荡系数的双曲型波动方程的渐近展开式.对R2中的光滑凸区域Ω,证明了渐近解在L∞(0,T;H10(Ω))中具有较好的收敛性,收敛阶为O(ε). 相似文献
4.
研究了Hdmhooltz方程的反散射问题.即利用散射数据反演介质参数与几何参数.并给出合成数据的例子. 相似文献
5.
阐述了二阶和四阶Helmholtz方程的一类周期边界问题的差分解法及其在过渡曲面设计中的应用。这类方法不同于传统的PDE方法中的二阶和四阶的偏微分方程,比传统的二阶和四阶偏微分方程有了更多的自由项,因此,在曲面设计的时候,就有更多的形状控制参数可进行调整,文中重点讨论了方程中的系数对曲面形状的影响,并研究了边界切矢条件对曲面形状的影响及其在曲面形状设计中的应用。设计者只需给出边界曲线和边界切矢,并通过对它们的控制就可构造和修改曲面形状。 相似文献
6.
7.
本文基于二阶导数的四阶Pade型紧致差分逼近式,并结合原方程本身,得到了三维Helmholtz方程的一种四阶精度的隐式紧致差分格式,该格式在每个空间方向上只涉及到三个点处的未知量及其二阶导数值。边界处对于二阶导数的离散格式利用四阶显式偏心格式。然后,利用Richardson外推法、算子插值法及二阶导数在边界点处的六阶显式偏心格式,将本文构造的格式精度提高到六阶。最后,通过数值实验验证了本文方法的精确性和可靠性。 相似文献
8.
KdV-Burgers方程出现在许多物理模型中,是非线性科学领域中的重要模型之一.本文讨论一类具有阻尼和非齐次项的KdV-Burgers方程的概周期解存在性问题.首先利用Galerkin方法构造出方程的有界解,并利用一些数学不等式给出这个解的先验估计;然后利用所得的先验估计和标准的紧致性方法证明方程广义解的存在性;最后证明当方程的非齐次项函数是关于时间变量的概周期函数时,该广义解就是方程的概周期解. 相似文献
9.
Helmholtz方程是一类描述电磁波的椭圆型偏微分方程,在力学、声学和电磁学等领域应用广泛。为了消除因高波数引起的污染效应,数值求解Helmholtz方程的传统方法是对网格进行加密,网格加密不仅增加了时间复杂度,且离散后的矩阵通常是病态的。因此,寻求对任意波数都有效的方法是必要的。在有限体积法的基础上,引入变限因子,将微分方程完全转换成积分方程,利用一元三点和二元九点Lagrange插值公式,构造含三对角矩阵的离散格式,分别对一维和二维Helmholtz方程进行变限积分法的数值求解。该方法适用于任意波数,求解过程物理意义明确,数值格式简单。对于一维Helmholtz方程研究了变限因子对误差的影响,利用Taylor展式及Lagrange插值余项公式进行误差估计,证明离散格式的截断误差达到二阶。数值实例表明该离散格式的变限因子和步长相等时,误差阶较低。对二维Helmholtz方程,探究不同波数对数值解的影响,证明离散格式的截断误差达到三阶。数值实例表明,对于不同的波数,数值格式都有较好的精度,高波数没有引起污染效应。 相似文献
10.
针对 Helmholtz 类方程 Cauchy 问题的严重不适定性,提出了三维修正 Helmholtz 方程 Cauchy 问题基于精确解的修正核方法。通过构造软化算子,将不适定问题转化为适定问题,获得了稳定的数值逼近解。当波数 $k$ 和参数 $m$ 满足所需的条件时,分别给出了正则参数在先验选取规则之下的正则近似解与精确解之间的 $L^2$-误差估计和 Sobolev 型 $H^s$-误差估计,并通过数值算例对理论部分进行验证,结果表明所提出的正则化方法是稳定和有效性的。 相似文献
11.
12.
G. Benedetto R. M. Gavioso R. Spagnolo M. Grigiante G. Scalabrin 《International Journal of Thermophysics》2001,22(4):1073-1088
This work presents measurements of the speed-of-sound in the vapor phase of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea). The measurements were obtained in a stainless-steel spherical resonator with a volume of 900 cm3 at temperatures between 260 and 380 K and at pressures up to 500 kPa. Ideal-gas heat capacities and acoustic virial coefficients are directly produced from the data. A Helmholtz equation of state of high accuracy is proposed, whose parameters are directly obtained from speed-of-sound data fitting. The ideal-gas heat capacity data are fit by a functions and used when fitting the Helmholtz equation for the vapor phase. From this equation of state other thermodynamic state function are derived. Due to the high accuracy of the equation, only very precise experimental data are suitable for the model validation and only density measurements have these requirements. A very high accuracy is reached in density prediction, showing the obtained Helmholtz equation to be very reliable. The deduced vapor densities are furthermore compared with those obtained from acoustic virial coefficients with the temperature dependences calculated from hard-core square-well potentials. 相似文献
13.
A new fundamental thermodynamic equation of state for difluoromethane was developed by considering the intermolecular potential behavior for improving the reliability in the gaseous phase. Reliable second and third virial coefficients are introduced in accordance with the principle of a unified relation of the intermolecular potential energy and the fundamental equation of state. The fundamental equation of state is able to provide reliable thermodynamic properties even at low temperatures or in the region near saturation where precise and accurate experimental data are not available. The estimated uncertainties of calculated properties from the equation of state are 0.07% in density for the liquid phase, 0.1% in pressure for the gaseous phase, 0.35% in pressure for the supercritical region, 0.07% in vapor pressure, 0.2% in saturated-liquid density, 0.7% in saturated-vapor density, 0.01% in speed of sound for the gaseous phase, 0.7% in speed of sound for the liquid phase, and 0.6% in isochoric specific heat for the liquid phase. The equation is valid for temperatures from the triple point to 450 K and pressures up to 72 MPa. 相似文献
14.
Helmholtz声学边界积分方程中奇异积分的计算 总被引:5,自引:0,他引:5
提出了一种非等参单元的四边形坐标变换,它将积分的曲面单元映射为另一四边形单元,通过两次坐标变换引入的雅可比行列式可以消除Helmholtz声学边界积分方程中的弱奇异型O(1/r))积分.而且利用δr/δn以及坐标变换可以同时消除坐标变换无法消除的Cauchy型(O(1/r^2))奇异积分,并给出了消除奇异性的详细证明.该方法给Helmholtz声学边界积分方程中的弱奇异积分与Cauchy奇异积分的计算以及编程提供了极大便利。 相似文献
15.
C.M. Linton 《Journal of Engineering Mathematics》1998,33(4):377-401
Analytical techniques are described for transforming the Green's function for the two-dimensional Helmholtz equation in periodic domains from the slowly convergent representation as a series of images into forms more suitable for computation. In particular methods derived from Kummer's transformation are described, and integral representations, lattice sums and the use of Ewald's method are discussed. Green's functions suitable for problems in parallel-plate acoustic waveguides are also considered and numerical results comparing the accuracy of the various methods are presented. 相似文献
16.
We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over-specified boundary, in the case of the alternating iterative algorithm of Kozlov, Maz'ya and Fomin(1991) applied to Cauchy problems for the modified Helmholtz equation. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed methods. 相似文献
17.
论Helmholtz方程的一类边界积分方程的合理性 总被引:5,自引:0,他引:5
本文导出了Helmholtz 方程超定边值问题有解的一个充要条件,和用非解析开拓法证明了文[1]中的Helmholtz 方程在外域中的解的边界积分表示式的合理性,并将此类边界积分表示式推广用于带空洞的有限域。这样就比较严密而又浅近地证明了基于该表示式建立起来的间接变量和直接变量边界积分方程的合理性。 相似文献
18.
Haiyan Qi Dan Fang Kehui Gao Xianyang Meng Jiangtao Wu 《International Journal of Thermophysics》2016,37(6):55
In this study, compressed liquid densities of Fluoroethane (R161, CAS No. 353-36-6) were measured using a high-pressure vibrating-tube densimeter over the temperature range from (283 to 363) K with pressures up to 100 MPa. A Helmholtz energy equation of state for R161 was developed from these density measurements and other experimental thermodynamic property data from the literature. The formulation is valid for temperatures from the triple point temperature of 130 K to 420 K with pressures up to 100 MPa. The approximate uncertainties of properties calculated with the new equation of state are estimated to be 0.25 % in density, 0.2 % in saturated liquid density between 230 K and 320 K, and 0.2 % in vapor pressure below 350 K. Deviations in the critical region are higher for all properties. The extrapolation behavior of the new formulation at high temperatures and high pressures is reasonable. 相似文献