首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peanut-shaped Sb2S3 superstructures have been synthesized via a hydrothermal process at 120 °C for 8 h using hydrochloric acid and antimony O-benzyl dithiocarbonate (benzylxanthate, Sb(S2COC7H7)3) as starting materials. The powder X-ray diffraction (XRD) pattern shows the product corresponds to the pure orthorhombic phase of Sb2S3, the purity and composition of which are further confirmed by X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) studies reveal that the peanut-shaped Sb2S3 superstructures are aggregated by nanorods. The possible mechanistic pathways in the formation of the structures are discussed.  相似文献   

2.
Nanocrystalline antimony trisulfide (Sb2S3) was successfully synthesized via microwave irradiation by the reaction of antimony trichloride (SbCl3) and thiourea (CS(NH2)2) with PVP as the surfactant. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution TEM (HRTEM). XRD results show that the as-prepared sample is orthorhombic-phase Sb2S3. TEM image of the as-prepared Sb2S3 shows the rod-like structure. HRTEM image indicates that rodbundles of Sb2S3 consists of a number nanorods with the diameter ranging from 30 nm to 50 nm. Detailed HRTEM image demonstrates the preferential direction growth of the Sb2S3 nanorods. The electrochemical properties of Sb2S3 were primarily investigated by constant current charge/discharge cycling tests in lithium hexafluorophosphate (LiPF6) solution. The possible electrochemical reaction mechanism was explained. The results indicate that the nanocrystalline Sb2S3 shows potential application in the field of the electrode materials.  相似文献   

3.
Crystalline dandelion-like antimony (III) sulfide (Sb2S3) nanowires were synthesized by a PEG-assisted solvothermal process. The orthorhombic crystal structure and dandelion-like multi-branched nanowire morphology were revealed by X-ray diffractometry (XRD) and scanning electron microscopy (SEM) respectively. High-resolution transmission electron microscopy (TEM) identified that the highly crystalline Sb2S3 nanowires grew along the [001] direction with individual wire diameter of 195 ± 52 nm. The band gap of the Sb2S3 nanowires was measured to be ca. 1.67 eV. A combination of PEG-templated assembly and crystal splitting mechanism was likely responsible for the growth of the observed nanowire dandelion structures.  相似文献   

4.
Juan Lu  Lude Lu  Xin Wang 《Materials Letters》2008,62(16):2415-2418
Large-scale antimony selenide (Sb2Se3) nanoribbons with uniform size have been prepared by solvothermal method using antimony chloride (SbCl3), tartaric acid (C4H6O6) and selenium metal powder (Se) as raw materials, N, N-dimethylformamide (DMF) as the solvent at 180 °C for 4 h. The powder X-ray diffraction (XRD) pattern shows the Sb2Se3 crystals belong to the orthorhombic phase with calculated lattice constants a = 1.159, b = 1.172 and c = 0.3978 nm. The quantification of EDS analysis peaks gives an atomic ratio of 2:3 for Sb:Se. Transmission electron microscopic (TEM) studies reveal the appearance of as-prepared Sb2Se3 is ribbon-like with the typical width of ca. 20 nm. Finally the influences of the reaction conditions are discussed and a possible mechanism for the formation of Sb2Se3 nanoribbons is proposed.  相似文献   

5.
Bismuth sulfide nanorods and nano-structured flowers were synthesized by hydrothermal reaction of bismuth nitrate pentahydrate and thiourea solutions, containing 1 and 2 ml of 65% HNO3, respectively. By using X-ray diffraction (XRD), selected area electron diffraction (SAED), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM), the products were specified as orthorhombic Bi2S3 in the shapes of nanorods and flower-like clusters of nanorods, with the growth of nanorods in the [001] direction. A diffraction pattern was also simulated, and was in good accordance with the SAED pattern obtained from the experiment.  相似文献   

6.
Large-scale rod-like antimony sulfide (Sb2S3) dendrites have been prepared by hydrothermal method using antimony chloride (SbCl3), citric acid and thioacetamide as raw materials at 160 °C for 12 h. The powder X-ray diffraction pattern shows the Sb2S3 crystals belong to the orthorhombic phase with calculated lattice parameters a = 1.120 nm, b = 1.128 nm and c = 0.3830 nm. The quantification of energy dispersive X-ray spectrometry analysis peaks gives an atomic ratio of 2:3 for Sb:S. Transmission electron microscopy micrograph studies reveal the appearance of the as-prepared Sb2S3 is dendrites-like which is composed of nanorods with the typical width of 300-500 nm and length of 5-20 µm. Finally the influences of the reaction conditions are discussed and a possible mechanism for the formation of rod-like Sb2S3 dendrites is proposed.  相似文献   

7.
In2O3 octahedrons were synthesized by carbothermal reduction method. The products were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDX), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction analysis (SAED) and room-temperature photoluminescence (PL) spectra. The results show that the products are single-crystalline In2O3 octahedrons with the arrises length in the range of 400-3000 nm. The PL spectra displays blue and green emission peaks which can be indexed to default and oxygen vacancies; blue-shift and intensity decrease was observed when excitation wavelength decreases from 380 nm to 325 nm. The growth mechanism of the In2O3 octahedrons is discussed.  相似文献   

8.
This paper describes an ethylene glycol (EG)-assisted approach to the large-scale ultralong Sb2S3 sub-microwires, formed by a simple hydrothermal reaction between SbCl3 and Na2S in the presence of distilled water. Transmission electron microscopy and scanning electron microscopy studies indicate that these Sb2S3 sub-microwires possess a diameter around 200 nm and length up to 100 μm. High-resolution transmission electron microscopy and selected area electron diffraction studies reveal that each Sb2S3 sub-microwire is a single-crystal along the [0 0 1] direction. The possible formation mechanism of the sub-microwires was discussed. The effects of volume ratio of EG/water, reaction temperature and the concentration of CO(NH2)2 on the morphology of Sb2S3 sub-microwires were also investigated.  相似文献   

9.
The synthesis of the single-crystal Co3O4 nanorods by molten salt approach was reported for the first time. The products were characterized by Transmission electron microscopy (TEM), X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM) and Selected-area electron diffraction (SAED). TEM results indicate that these nanorods have diameters of about 150 nm and lengths of about 2 μm. According to the analysis of the SAED and HRTEM results, we drew the conclusion that these nanorods grew along an unusual [− 1,− 1,15] direction by Ostwald ripening mechanism.  相似文献   

10.
Sb2O3 nanorods were successfully prepared via a mild hydrothermal route based on the reactions between SbCl3 and NH3·H2O in aqueous solution at 120-180 °C for 12 h. The as-prepared Sb2O3 nanorods were characterized by X-ray diffraction (XRD), transmission electronic microscopy (TEM), and X-ray photoelctron spectroscopy (XPS). Results showed that NH3·H2O played a significant role in the formation of Sb2O3 nanorods. The presence of NH3·H2O could greatly favor the reaction progress toward the right-hand side and led to the orientation growth of Sb2O3 nanorods. A possible mechanism for the formation of Sb2O3 nanocrystallites was discussed.  相似文献   

11.
C3N4 nanowires and pseudocubic C3N4 polycrystalline nanoparticles have been synthesized by the reaction between C3N3Cl3 and NaN3 with Zn powder as catalyst. The process was carried out using a constant-pressure benzene thermal method at 40 MPa and 220 °C. The prepared nanowires have a diameter range of 3-6 nm and length range of 100-200 nm, while the diameters of the nanoparticles range from 10 nm to 40 nm. The as-prepared samples were characterized by X-ray powder diffraction (XRD), Fourier transform spectroscopy (FTIR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS).  相似文献   

12.
Novel Bi2S3 hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. The hierarchical nanostructures exhibit a flower-like shape. X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were used to characterize the as-synthesized samples. Meanwhile, the effect of various experimental parameters including the concentration of reagents and reaction time on final product has been investigated. In our experiment, PVP plays an important role for the formation of the hierarchical nanostructures and the possible mechanism was proposed. In addition, Bi2S3 film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties, which may bring nontrivial functionalities and may have some promising applications in the future.  相似文献   

13.
X.K. Duan  Y.Z. Jiang 《Vacuum》2011,85(11):1052-1054
Taking elemental antimony and tellurium as source materials, Sb2Te3 nanopowders were prepared by vacuum arc plasma evaporation technique. Microstructure and morphology of the samples were characterized via X-ray diffraction and field emission scanning electron microscope. Compositional analysis was carried out by energy dispersive analysis of X-rays. Lattice constants (a = 4.267 Å, c = 30.469 Å) of Sb2Te3 nanopowders are calculated by (015) and (110) diffraction peaks of X-ray diffraction patterns. Field emission scanning electron microscope surface morphology of the nanopowders shows the irregular polyhedron and rhombohedral structure. Atoms percentage of the nanopowders is calculated by quantitative analysis using energy dispersive analysis of X-rays spectrum. The experimental results show that the percentages of Sb and Te atoms are 41.3% and 58.7% respectively.  相似文献   

14.
In this work, self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) were applied to induce the nucleation and growth of the antimony sulfide (Sb2S3) films on the functional ITO glass substrate at low temperature. The structure, morphology, and optical properties of the Sb2S3 films were investigated by X-ray diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy, and UV–vis spectroscopy. After thermal treatment at 200 °C for 1 h in air, the orthorhombic Sb2S3 was formed as a predominant phase in the deposited thin films. When the deposited films were thermally treated at 400 °C for 1 h in air, the orthorhombic Sb2S3 was decomposed and a cubic Sb2O3 was formed. The optical band energies of the as-deposited and thermally treated Sb2S3 films at 200 °C for 1 h in air and nitrogen were found to be 2.05 eV, 1.77, and 1.76 eV, respectively. As chemical templates, the OTS-functionalized SAMs played an important role in controlling the nucleation and growth of Sb2S3 films at low temperature. The results obtained from different preparation parameters applied in the present work will allow controlling the growth of the Sb2S3 films with uniform surface.  相似文献   

15.
Barium carbonate (BaCO3) nanostructures with different morphologies were synthesized using Ba(NO3)2 and (NH4)2CO3 in the water/ethylene glycol (EG) mixed solvents by oil bath heating at 80 °C for 30 min. The molar ratio of water to EG had an effect on the morphology of BaCO3. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM).  相似文献   

16.
Single-phase RMn2O5 (R = Gd and Sm) nano- and microstructures have been successfully synthesized via a simple hydrothermal process at 250 °C for 24 h using NaOH as mineralizer. X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selective area electron diffraction patterns (SAED) were used to characterize the as-synthesized GdMn2O5 and SmMn2O5 samples. The effect of NaOH concentration and the molar ratio of Mn2+/Mn7+ on the morphology and size of the final products was studied, and a possible formation mechanism of RMn2O5 (R = Gd and Sm) nanoplates and nanorods under hydrothermal conditions was proposed.  相似文献   

17.
In this paper, we report a simple hydrothermal method without any surfactants, for the first time, to synthesize single-crystal BaTiO3 dendrites. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED), and high-resolution transmission electron microscopy (HRTEM). The KOH concentration was found to be vital to the final formation of BaTiO3 dendrites. An obvious morphology evolution from sphere-like shape to dendrite was observed when KOH concentration was decreased from 1 M to 0.1 M. It is rational to expect that dendritic structures of other perovskite oxides may also be synthesized by this simple method.  相似文献   

18.
Juan Lu  Lude Lu  Xin Wang 《Materials Letters》2007,61(16):3425-3428
Large-scale bismuth sulfide (Bi2S3) nanorods with uniform size have been prepared by hydrothermal method using bismuth chloride (BiCl3) and sodium sulfide (Na2S·9H2O) as raw materials at 180 °C and pH = 1-2 for 12 h. The powder X-ray diffraction (XRD) pattern shows the Bi2S3 crystal belongs to the orthorhombic phase with calculated lattice constants a = 1.1187 nm, b = 1.1075 nm and c = 0.3976 nm. Furthermore, the quantification of X-ray photoelectron spectra (XPS) analysis peaks gives an atomic ratio of 1.9:3.0 for Bi:S. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopic (TEM) studies reveal that the appearance of the as-prepared Bi2S3 is rod-like with typical lengths in the range of 2-5 μm and diameters in the range of 10-30 nm. Finally the influences of the reaction conditions are discussed and a possible mechanism for the formation of Bi2S3 nanorods is proposed.  相似文献   

19.
Ke Xu 《Materials Letters》2008,62(28):4322-4324
The novel 3D octahedron-like PbF2 structures with dimension of 2-4 µm have been successfully synthesized by a simple route at low temperature. The morphologies and structures of as-prepared products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The growth mechanism has been proposed for octahedral PbF2. It was found that the aging time is important for the formation of 3D octahedron-like PbF2 structures. The room-temperature photoluminescence measurements revealed a strong blue emission band at 485 nm. It was indicated that the as-prepared octahedral PbF2 could have the potential application in optoelectronic devices.  相似文献   

20.
The Cu2O/SnO2/graphene (CSG) and SnO2/graphene (SG) nanocomposite photocatalysts were prepared by simple sol-gel growth method, and characterized by Fourier transform infrared spectra (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) measurements, respectively. The photocatalytic efficiency of catalysts were evaluated by degradation of pendimethalin under visible light irradiation (λ > 420 nm), which conformed that CSG and SG exhibited better photocatalytic activity than SnO2 or graphene alone. An effort has been made to correlate the photoelectro-chemical behavior of these samples to the rate of photocatalytic degradation of pendimethalin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号