首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of gadolinium–sodium polyphosphate NaGd(PO3)4 were grown for the first time using a flux method and characterized by X-ray diffraction. This phosphate crystallizes in a monoclinic system with P21/n space group and with the following unit-cell dimensions: a = 9.767(3) Å, b = 13.017(1) Å, c = 7.160(2) Å, β = 90.564(5)°, V = 910.3(4) Å3 and Z = 4. The crystal structure was solved from 3451 X-ray independent reflections with final R(F2) = 0.0219 and Rw(F2) = 0.056 refined with 164 parameters (). The atomic arrangement can be described as a long chain polyphosphate organization. Two infinite (PO3)∝ chains with a period of eight tetrahedra run along the [0 1 1] direction. The structure of NaGd(PO3)4 consists of GdO8 polyhedra sharing oxygen atoms with phosphoric group PO4. Each Na+ ion is bonded to eight oxygen atoms.  相似文献   

2.
Single crystal of Yb:GdYAl3(BO3)4(Yb:GdYAB) has been grown by the flux method. The structure of Yb:GdYAB crystal has been determined by X-ray diffraction analysis. The experiment show that the crystal has the same structure as that of YAl3(BO3)4 crystal and its unit cell constants have been measured to be a = 9.30146 Å, c = 7.24164 Å, Vol = 542.59 Å3. The absorption and fluorescence spectrum of Yb:GdYAl3(BO3)4 crystal have also been measured at room temperature. In the absorption spectra, there are two absorption bands at 938 nm and 974 nm, respectively, which is suitable for InGaAs diode laser pumping. In the fluorescence spectra, there are two fluorescence peaks at 992 and 1040 nm. The thermal properties of Yb:GdYAl3(BO3)4 crystal have been studied for the first time. The thermal expansion coefficient along c-axis is almost 5.4 times larger than that along a-axis. The specific heat of the crystal has been measured to be 0.77 J/g °C at room temperature. The calculated thermal conductivity is 5.26 Wm−1 K−1 along a-direction.  相似文献   

3.
The preparation, crystal structure, TG–DTA analysis and spectroscopy investigation are reported for the 2,5-dimethoxy phenyl ammonium cyclotetraphosphate dihydrate [2,5-(CH3O)2C6H3NH3]4P4O12·2H2O. This new compound is triclinic P with unit cell dimensions: a = 7.438(5) Å, b = 11.841(7) Å, c = 12.354(4) Å,  = 96.61(4)°, β = 98.35(4)°, γ = 102.60(6)°, Z = 1 and V = 1038.0(1) Å3. Its crystal structure has been determined and refined to R = 0.049, with 5128 independant reflections. The structure can be described by rows of P4O12 ring anions along the a axis; between these rows are located the organic groups, connected to them by hydrogen bonds.  相似文献   

4.
The preparation of thorium phosphate-diphosphate (Th4(PO4)4P2O7, TPD) was developed through the precipitation of thorium phosphate-hydrogenphosphate hydrate (Th2(PO4)2(HPO4)·H2O, TPHPH) at 150–160 °C in closed PTFE container or in autoclaves. From EPMA analyses and SEM observations, the initial precipitate was single phase and multilayered. The behaviour of TPHPH (orthorhombic system with a = 21.368(2) Å, b = 6.695(1) Å and c = 7.023(1) Å) was followed when heating up to 1250 °C. It was first dehydrated leading to the anhydrous thorium phosphate-hydrogenphosphate (TPHP, orthorhombic system with a = 21.229(2) Å, b = 6.661(1) Å and c = 7.031(1) Å at 220 °C) after heating between 180 and 200 °C. This one turned progressively into the new low-temperature variety of TPD (called -TPD, orthorhombic system with a = 21.206(2) Å, b = 6.657(1) Å and c = 7.057(1) Å at 300 °C) correlatively to the condensation of hydrogenphosphate groups into diphosphate entities. These three phases (TPHPH, TPHP and -TPD) exhibit closely related 2D layered structures, therefore different from the 3D structure of the thorium phosphate-diphosphate (high-temperature variety). This latter compound, now called β-TPD, was obtained by heating -TPD above 950 °C. All the techniques involved in this study (XRD, Raman and IR spectroscopy, 1H and 31P NMR) confirmed the successive chemical reactions proposed.  相似文献   

5.
Crystals of 2-amino-4-methylpyridinium dihydrogenmonoarsenate (C6H9N2)H2AsO4 and 2-amino-4-methylpyridinium dihydrogenmonophosphate (C6H9N2)H2PO4 have been prepared and grown at room temperature. These materials are isotypic with the following unit cell dimensions (C6H9N2)H2AsO4: a = 12.4415(5) Å, b = 6.8224(3) Å, c = 11.3524(5) Å, Z = 4, V = 963.60(6) Å3; (C6H9N2)H2PO4: a = 12.4410(9) Å, b = 6.7165(3) Å, c = 11.3417(5) Å, Z = 4, V = 925.09(10) Å3. The common space group is Pnma. The structure of these compounds has been determined by X-ray data collection on single crystals of (C6H9N2)H2AsO4 and (C6H9N2)H2PO4. Due to the strong hydrogen-bond network connecting the H2XO4 groups, the anionic arrangement must be described as a linear organization. The chains composed by the macroanion spread along the b-direction, approximately centered by x = 0 and 1/2. All atoms of the structure, except one oxygen atom, are located in the mirror planes situated at y = 1/4 and 3/4, imparting an internal mirror symmetry to the anionic and the cationic entities. The linear macroanions are crossed by organic cations lying in mirrors perpendicular to the b-direction; this atomic arrangement is then described by a three-dimensional network of hydrogen bonds, built up by two types, O–HO bonds inside the chains and N–HO bonds linking adjacent chains. The thermal properties of both compounds are investigated as well as the IR properties supported by group theoretical analyses.  相似文献   

6.
Chemical preparation, crystal structure, IR absorption and thermal analysis of a new cyclotetraphosphate [2-NH2-5-CH3C5H4N]4P4O12·6H2O are reported. This compound is triclinic P-1 with unit-cell parameters: a = 10.206(5), b = 11.778(1), c = 9.991(4) Å,  = 110.40(6), β = 117.74(6), γ = 86.41(3)°, V = 989.1(8) Å3, Z = 1, Dx = 1.445 g cm−3. The structure has been determined and refined to R = 0.034 and Rw = 0.044, using 3663 independent reflections. The ring anions and water molecules form layers spreading around (a, b + c) planes via OHO hydrogen bonds. Between them are anchored 2-amino-5-methylpyridium cations, which establish H-bonds to interconnect the different adjacent layers and so contribute to the cohesion of the three-dimensional network. Tautomerization of (C6H9N2)+ groups was evidenced in the present structure.  相似文献   

7.
The structure of NaPb9(PO4)6F(H2O)0.33, isostructural with apatite, was determined by X-ray powder diffraction methods and the result of Rietveld refinement is P63/m, a = 9.76396(8) Å and c = 7.27520(9) Å. The final refinement led to RF = 5.4%, RB = 6.6%. In the tunnel, the water molecule (Ow) and F ions appear to be located in 2b and 4e sites, with occupancies of 0.028(6) and 0.075(8), respectively. In the M(1) and M(2) sites the occupancies of Pb and Na are 0.282(3)/0.051(3) and 0.467(5)/0.033(5), respectively. The formula assigned to the compound is [Pb3.38(4)Na0.62(4)](1)[Pb5.60(6)Na0.40(6)](2)(PO4)6F0.90(10)(H2O)0.33(7)0.77(17), where □ = vacancy. The assignment of the observed frequencies in the Raman and infrared spectra is discussed on the basis of a unit-cell group analysis and by comparison with fluor and chloroapatite analogs. The result of 31P and 23Na magic angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies confirmed the structural results.  相似文献   

8.
Synthesis and single crystal structure are reported for a new gadolinium acid diphosphate tetrahydrate HGdP2O7·4H2O. This salt crystallizes in the monoclinic system, space group P21/n, with the following unit-cell parameters: a = 6.6137(2) Å, b = 11.4954(4) Å, c = 11.377(4) Å, β = 87.53(2)° and Z = 4. Its crystal structure was refined to R = 0.0333 using 1783 reflections. The corresponding atomic arrangement can be described as an alternation of corrugated layers of monohydrogendiphosphate groups and GdO8 polyhedra parallel to the () plane. The cohesion between the different diphosphoric groups is provided by strong hydrogen bonding involving the W4 water molecule.

IR and Raman spectra of HGdP2O7·4H2O confirm the existence of the characteristic bands of diphosphate group in 980–700 cm−1 area. The IR spectrum reveals also the characteristic bands of water molecules vibration (3600–3230 cm−1) and acidic hydrogen ones (2340 cm−1). TG and DTA investigations show that the dehydration of this salt occurs between 79 and 900 °C. It decomposes after dehydration into an amorphous phase. Gadolinium diphosphate Gd4(P2O7)3 was obtained by heating HGdP2O7·4H2O in a static air furnace at 850 °C for 48 h.  相似文献   


9.
Ca5La5(SiO4)3(PO4)3O2 doped with Dy3+ were synthesized by sol–gel technology with hybrid precursor employed four different silicate sources, 3-aminopropyl-trimethoxysilane (APMS), 3-aminopropyl-triethoxysilane (APES), 3-aminopropyl-methyl-diethoxysilane (APMES) and tetraethoxysilane (TEOS), respectively. The SEM diagraphs show that there exist some novel unexpected morphological structures of microrod owing to the crosslinking reagents than TEOS as silicate source for their amphipathy template effect. X-ray pictures confirm that Ca5La5(SiO4)3(PO4)3O2:Dy3+ compound is formed by a pure apatitic phase. The Dy3+ ions could emit white light in Ca5La5(SiO4)3(PO4)3O2 compound, and the ratio of Y/B is 1.1, when the Dy3+ doped concentration is 1.0 mol%.  相似文献   

10.
An all alkoxide based sol–gel route was investigated for preparation of epitaxial La0.5Sr0.5CoO3 (LSCO) films on 100 SrTiO3 (STO) substrates. Films with 20–30 to 80–100 nm thickness were prepared by spin-coating 0.2–0.6 M (metal) solutions on the STO substrates and heat treatment to 800 °C at 2 °C min− 1, 30 min, in air. The films were epitaxial with a cube-on-cube alignment and the LSCO cell was strained to match the STO substrate of 3.905 Å closely; a and b = 3.894 Å and 3.897 Å for the 20–30 and 80–100 nm films, respectively. The c-axis was compressed to 3.789 Å and 3.782 Å for the 20–30 and 80–100 nm films, respectively, which resulted in an almost unchanged cell volume as compared to polycrystalline film and nano-phase powders prepared in the same way. The SEM study showed mainly very smooth, featureless surfaces, but also some defects. A film prepared in the same way on an -Al2O3 substrate was dense and polycrystalline with crystallite sizes in the range 10–50 nm and gave cubic cell dimensions of ac = 3.825 Å. The conductivity of the ca 30–40 nm thick polycrystalline film was 1.7 mΩcm, while the epitaxial 80–100 nm film had a conductivity of around 1.9 mΩcm.  相似文献   

11.
A new series of 20Bi(PO3)3–10Sr(PO3)2–35BaF2–35MgF2 doped with Yb3+ is introduced for fiber and waveguide laser applications. The stimulated emission cross-section σemi, which was found to be 1.37 pm2 at the lasing wavelength of 996 nm, is the highest one among fluorophosphate glasses. It has been found that an extremely high gain coefficient of G = 1.65 ms pm4 and high quantum efficiency of η = 93% for 1 wt.% Yb2O3 doped systems. The various concentration effects on laser performance properties including minimum pumping intensity Imin, the minimum fraction of excited ions βmin and the saturation pumping intensity Isat are analyzed as a function of Yb2O3 concentration. Those results obtained in current system had advantage over some fluorophosphate glasses reported.  相似文献   

12.
The room temperature crystal data and the optical properties of the Bridgman method grown Tl2InGaSe4 crystals are reported and discussed. The X-ray diffraction technique has revealed that Tl2InGaSe4 is a single phase crystal of monoclinic structure. The unit cell lattice parameters, which were recalculated from the X-ray data, are found to be a = 0.77244 nm, b = 0.64945 nm, c = 0.92205 nm and β = 95.03°. The temperature dependence of the optical band gap of Tl2InGaSe4 single crystal in the temperature region of 290–500 K has also been investigated. The absorption coefficient was calculated from the transmittance and reflectance data in the incident photon energy range of 1.60–2.10 eV. The absorption edge is observed to shift toward lower energy values as temperature increases. The fundamental absorption edge corresponds to indirect allowed transition energy gap of 1.86 eV that exhibited a temperature coefficient γ = −3.53 × 10−4 eV/K.  相似文献   

13.
The synthesis and photoluminescent (PL) properties of calcium stannate crystals doped with europium grown by mechanically activated in a high energy vibro-mill have been investigated. The characteristics of Ca2SnO4:Eu3+ phosphors were found to depend on the amounts of europium ions. The XRD profiles revealed that the system, (Ca1−xEux)2SnO4, could form stable solid solutions in the composition range of x = 0–7% after being calcined at 1200 °C. The calcined powders emit bright red luminescence centered at 618 nm due to 5D0 → 7F2 electric dipole transition. Both XRD data and the emission ratio of (5D0 → 7F2)/(5D0 → 7F1) reveal that the site symmetry of Eu3+ ions decreases with increasing doping concentration. The maximum PL intensity has been obtained for 7 mol% concentration of Eu3+ in Ca2SnO4.  相似文献   

14.
Samarium-doped ceria (SDC) thin films were prepared from Sm(DPM)3 (DPM = 2,2,6,6-tetramethyl-3,5-heptanedionato) and Ce(DPM)4 using the aerosol-assisted metal–organic chemical vapor deposition method. -Al2O3 and NiO-YSZ (YSZ = Y2O3-stabilized ZrO2) disks were chosen as substrates in order to investigate the difference in the growth process on the two substrates. Single cubic structure could be obtained on either -Al2O3 or NiO-YSZ substrates at deposition temperatures above 450 °C; the similar structure between YSZ and SDC results in matching growth compared with the deposition on -Al2O3 substrate. A typical columnar structure could be obtained at 650 °C on -Al2O3 substrate and a more uniform surface was produced on NiO-YSZ substrate at 500 °C. The composition of SDC film deposited at 450 °C is close to that of precursor solution (Sm : Ce = 1 : 4), higher or lower deposition temperature will both lead to sharp deviation from this elemental ratio. The different thermal properties of Sm(DPM)3 and Ce(DPM)4 may be the key reason for the variation in composition with the increase of deposition temperature.  相似文献   

15.
Thin films of the system xAl2O3–(100 − x)Ta2O5–1Er2O3 were prepared by a sol–gel method and a dip-coating technique. The influences of the composition and the crystallization of the films on Er3+ optical properties were investigated. Results of X-ray diffraction indicated that the crystallization temperature of Ta2O5 increased from 800 to 1000 °C with increased values of x. In crystallized films, the intensities of the visible fluorescence and upconversion fluorescence tend to decrease with an increase in x values, due to the high phonon energy of Al2O3; the strongest fluorescence is observed in a crystallized film for x = 4 heat treated at 1000 °C. In amorphous films obtained by heat treatment at relatively low temperatures the Er3+ fluorescence could not be observed because strong fluorescence from organic residues remaining in the films thoroughly covered the Er3+ fluorescence. On the other hand, the Er3+ upconversion fluorescence in the amorphous films was observed to be stronger than that in the crystallized films. The strongest upconversion fluorescence is observed in an amorphous film for x = 75 heat treated at 800 °C.  相似文献   

16.
Nd3+-doped NaLa(WO4)2 single crystal with a dimension of 20 mm × 40 mm and a good optical quality was grown by Czochralski method. The polarized absorption spectra and emission spectra were measured at room temperature. The absorption cross-section and emission cross-section were presented. The Judd–Ofelt theory, extended to anisotropic system, has been applied to evaluate the intensity parameters Ωt (t = 2, 4, 6), radiative transition rates A, radiative lifetimes τR and fluorescent branching ratios β. The calculated radiative lifetime was compared with the experiment data for the 4F3/2 emitting level. All spectral features are strongly affected by an inhomogeneous broadening connected with the ‘disordered crystal’ character of the title compound.  相似文献   

17.
In order to study the influence in the change of the coordination environment of the cationic sites on the luminescent properties of rare-earth ions doping polyphosphates Ln(PO3)3 (Ln = La, Y) with two different structures, the time-resolved luminescence of the Eu3+ ion, used as structural probe, is reported. La(PO3)3 has an orthorhombic structure in which only one position with eight coordination is available for the cation, while Y(PO3)3 adopts the Yb(PO3)3 structure in which four slightly different octahedral sites are available for the trivalent rare-earth ion. Site-selective excitation of the 5D0 level was performed and luminescence decay times of each Eu3+ site were measured at 77 K. The spectroscopic results are discussed and correlated with the structural data.  相似文献   

18.
Synthesis of Ca doped PbTiO3 powder by a chemically derived sol–gel process is described. Crystallization characteristics of different compositions Pb1−xCaxTiO3 (PCT) with varying calcium (Ca) content in the range x = 0–0.45 has been investigated by DTA/TGA, X-ray diffraction and scanning electron microscopy. The crystallization temperature is found to decrease with increasing calcium content. X-ray diffraction reveals a tetragonal structure for PCT compositions with x ≤ 0.35, and a cubic structure for x = 0.45. Dielectric properties on sintered ceramics prepared with fine sol–gel derived powders have been measured. The dielectric constant is found to increase with increasing Ca content, and the dielectric loss decreases continuously. Sol–gel derived Pb1−xCaxTiO3 ceramics with x = 0.45 after poling exhibit infinite electromechanical anisotropy (kt/kp) with a high d33 = 80 pC/N, ′ = 298 and low dielectric loss (tan δ = 0.0041).  相似文献   

19.
Solid solutions of Bi3(Nb1−xTax)O7 (x = 0.0, 0.3, 0.7, 1) were synthesized using solid state reaction method and their microwave dielectric properties were first reported. Pure phase of fluorite-type could be obtained after calcined at 700 °C (2 h)−1 between 0 ≤ x ≤ 1 and Bi3(Nb1−xTax)O7 ceramics could be well densified below 990 °C. As x increased from 0.0 to 1.0, saturated density of Bi3(Nb1−xTax)O7 ceramics increased from 8.2 to 9.1 g cm−3, microwave permittivity decreased from 95 to 65 while Qf values increasing from 230 to 560 GHz. Substitution of Ta for Nb modified temperature coefficient of resonant frequency τf from −113 ppm °C−1 of Bi3NbO7 to −70 ppm °C−1 of Bi3TaO7. Microwave permittivity, Qf values and τf values were found to correlate strongly with the structure parameters of fluorite solid solutions and the correlation between them was discussed in detail. Considering the low densified temperature and good microwave dielectric proprieties, solid solutions of Bi3(Nb1−xTax)O7 ceramics could be a good candidate for low temperature co-fired ceramics application.  相似文献   

20.
The (1 − x) La0.67Ca0.33MnO3/xCuFe2O4 (x = 0, 0.04, 0.07, 0.10 and 0.15) composites have been prepared and investigated systematically for their microstructure, electrical and magnetic properties. The X-ray diffraction and scanning electronic microscopy analysis reveal that both La0.67Ca0.33MnO3 (LCMO) and CuFe2O4 phases are distributed in the composites. Compared with pure LCMO, an obvious enhancement of magnetoresistance is observed over a wide temperature range for the composites. Under 3 T field, the magnetoresistance rises from a base value 44.5% for pure LCMO, to a maximum value of 66.7% for x = 0.1 composite. Meanwhile, a weak temperature-dependent MR platform is observed in the temperature range from 210 K to 240 K. The MR enhancement is discussed in terms of spin-polarized intergrain tunneling due to enhanced magnetic disorder and magnetic coupling near boundaries between LCMO and CuFe2O4 grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号