首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A conflict between accommodation and vergence is one possible cause of visual fatigue and discomfort while viewing conventional three‐dimensional displays. Previous studies have proposed the super multi‐view (SMV) display technique to solve the vergence–accommodation conflict, in which two or more parallax images enter the pupil of the eye with highly directional rays. We simultaneously measured accommodative, vergence, and pupillary responses to SMV three‐dimensional displays to examine whether they can reduce the conflict. For comparison, responses to two‐view stereo images and real objects were also measured. The results show that the range of the accommodative response was increased by the SMV images compared with the two‐view images. The slope of the accommodation–vergence response function for the SMV images was similar to that for the real objects rather than the two‐view images. We also found that enhancement of the accommodative range by the SMV images is noticeable with binocular viewing, indicating that vergence‐induced accommodation plays an important role in viewing SMV displays. These results suggest that SMV displays induced a more natural accommodative response than did conventional, two‐view stereo displays. As a result, SMV displays reduced the vergence–accommodation conflict.  相似文献   

2.
Abstract— Autostereoscopic 3‐D display technologies enable a more immersive media experience by adding real depth to the visual content. However, the method used for the creation of a sensation of depth or stereo illusion contains several display design and content‐related issues that need to be carefully considered to maintain sufficient image quality. Conventionally, methods used for 3‐D image‐quality evaluations have been based on subjective testing. Optical measurements, in addition to subjective testing, can be used as an efficient tool for 3‐D display characterization. Objective characterization methods for autostereoscopic displays have been developed. How parameters affecting stereo image quality can be defined and measured, and how their effect on the stereo image quality can be evaluated have been investigated. Developed characterization methods are based on empirically gathered data. In this paper, previously presented methodology for two‐view displays is extended to cover autostereoscopic multiview displays. A distinction between displays where the change in content occurs in clear steps when the user moves in front of the display, and displays where the apparent movement of the objects is more continuous as a function of the head movement is made. Definitions for 3‐D luminance and luminance uniformity, which are equally important, as well as 3‐D crosstalk, which is the dominant factor in the evaluations of the perceived 3‐D image quality, is focused upon.  相似文献   

3.
Abstract— Conventional stereoscopic displays require viewers to unnaturally keep eye accommodation fixed at one focal distance while they dynamically change vergence to view objects at different distances. This forced decoupling of reflexively linked processes fatigues eyes, causes discomfort, compromises image quality, and may lead to pathologies in developing visual systems. Volumetric displays can overcome this conflict, but only for small objects placed within a limited range of viewing distances and accommodation levels, and cannot render occlusion cues correctly. Our multi‐planar True 3‐D displays generate accommodation cues that match vergence and stereoscopic retinal disparity demands and can display images and objects at viewing distances throughout the full range of human accommodation (from 6.25 cm to infinity), better mimicking natural vision and minimizing eye fatigue.  相似文献   

4.
5.
Many people complain about visual fatigue arising from viewing three‐dimensional (3D) displays. This paper investigates relationship between visual fatigue and viewers' phoria for viewing autostereoscopic 3D displays. Visual fatigue is evaluated through subjective symptoms with a questionnaire and optometric indicators comprising fusion range as well as accommodation convergence/accommodation (AC/A) ratio to measure the variation in visual functions. A screening test is adopted to divide the subjects into two groups based on whether they suffer from phoria. Then a 2 × 2 × 2 mixed design experiment is conducted with display type, viewing stage, and visual state as factors to examine visual fatigue during viewing session. The results show that phoria subjects obtain more severe visual fatigue than normal on subjective evaluation. The normal subjects reveal a more marked difference with phoria in fusion range and AC/A ratio after viewing 3D video clip. Fusion range can significantly distinguish between the two‐dimensional (2D) and 3D condition as well as between the pre‐ and post‐viewing stages. The sensitivity and specificity of fusion range is higher than AC/A ratio with respect to viewing of 3D contents, so it is more appropriate as an optometric indicator of visual fatigue for autostereoscopic 3D displays.  相似文献   

6.
To answer the question: “what is 3D good for?” we reviewed the body of literature concerning the performance implications of stereoscopic 3D (S3D) displays versus non-stereo (2D or monoscopic) displays. We summarized results of over 160 publications describing over 180 experiments spanning 51 years of research in various fields including human factors psychology/engineering, human–computer interaction, vision science, visualization, and medicine. Publications were included if they described at least one task with a performance-based experimental evaluation of an S3D display versus a non-stereo display under comparable viewing conditions. We classified each study according to the experimental task(s) of primary interest: (a) judgments of positions and/or distances; (b) finding, identifying, or classifying objects; (c) spatial manipulations of real or virtual objects; (d) navigation; (e) spatial understanding, memory, or recall and (f) learning, training, or planning. We found that S3D display viewing improved performance over traditional non-stereo (2D) displays in 60% of the reported experiments. In 15% of the experiments, S3D either showed a marginal benefit or the results were mixed or unclear. In 25% of experiments, S3D displays offered no benefit over non-stereo 2D viewing (and in some rare cases, harmed performance). From this review, stereoscopic 3D displays were found to be most useful for tasks involving the manipulation of objects and for finding/identifying/classifying objects or imagery. We examine instances where S3D did not support superior task performance. We discuss the implications of our findings with regard to various fields of research concerning stereoscopic displays within the context of the investigated tasks.  相似文献   

7.
Abstract— Display‐measurement methods different from conventional 2‐D display measurements are needed for verifying the optical characteristics of autostereoscopic (3‐D) displays and for comparing different 3‐D display technologies. Industry is lacking standardized measurement methods, and the reported results can not always be compared. The selected set of characteristics discussed in this paper and partly defining the quality of the 3‐D experience are crosstalk, viewing freedom, and optimum viewing distance. Also, more conventional display characteristics such as luminance are discussed, since the definitions for these characteristics in 3‐D mode usually differ from those used for the 2D displays. We have investigated how these chosen 3‐D display characteristics can be objectively measured from transmissive two‐view and multiview 3‐D displays. The scope of this article is to generally define those basic characteristics as well as the different measurement methods. Most of the 3‐D characteristics can be derived from the luminance and colors versus the viewing angle. Either a conoscopic or a goniometric measurement system can be used, as long as the angular and stray‐light properties are suitable and known. The characteristics and methods are currently discussed in the display‐quality standardization forums.  相似文献   

8.
There has been a recent commercialization of 3D stereoscopic displays in order to implement them in a virtual reality environment. However, there is a lack of extensive research into user interfaces for 3D applications on stereoscopic display. This study focused on three representative interaction techniques (ray-casting, keypad and hand-motion techniques) utilizing a head-mounted display and 3D CAVE. In addition, the compatibility with 3D menus was also investigated based on performance and subjective assessment. Nine 3D menus were designed for the experiment in regards to three 2D metaphors (pop-up, pull-down and stack menus) and three structural layouts (list, cubic and circular menus). The most suitable technique for the 3D user interface on a stereoscopic display was the ray-casting technique and the stack menu which provided the user with good performance and subjective response. In addition, it was found that the cubic menu was not as effective as other menus when used with the three interaction techniques.Relevance to industryThis research describes a distinctive evaluation method and recommendations that guarantee the suitability for interactive 3D environments. Therefore, the results will encourage practitioners and researchers that are new to the area of 3D interface design.  相似文献   

9.
To widen the vertical and horizontal angular ranges where the lens performs well, the off‐axis performance of a liquid crystal gradient index (LC GRIN) lens is analyzed by the combined simulation system of an LC director simulator and a ray‐tracing simulator. We found that the angular difference between an LC alignment direction and an electrode array direction of the LC GRIN lens is one of significant parameters, and detailed conditions of structure are established. The measurement result shows that the developed structure reduces the degradation ratio in a luminance profile from 61% to 3.2%. We have applied a user tracking system for the rotatable 3D display, equipped with a detection of a panel orientation and a face position. As a result, we have developed a rotatable 2D/3D tablet whose 3D viewing azimuth angle is over 30° in both landscape and portrait orientations.  相似文献   

10.
A camera‐free 3D air‐touch system was proposed. Hovering, air swiping, and 3D gestures for further interaction with the floated 3D images on the mobile display were demonstrated. By embedding multiwavelength optical sensors into the display pixels and adding angular‐scanning illuminators with multiwavelength on the edge of the display, the flat panel can sense images reflected by a bare finger from different heights. In addition, three axis (x, y, z) information of the reflected image of the fingertip can be calculated. Finally, the proposed 3D air‐touch system was successfully demonstrated on a 4‐inch mobile 3D display.  相似文献   

11.
Abstract— Stereoscopic 3‐D digital imaging holds the promise of improving the detection, diagnosis, and treatment of disease as well as enhancing the training and preparation of medical professionals through use of stereoscopic 3‐D displays in concert with the many volumetric visualization techniques/modalities developed in recent years. While so‐called 3‐D graphics have improved the state of computer visualization in general, 3‐D displays make full use of the human‐visual perception, and thus can provide critical insight in complex computer‐generated and video 3‐D data. The stereo 3‐D applications reviewed in this paper include screening of breast cancer and diabetic retinopathy, visualization for minimally invasive surgery, and the teaching of anatomy. Also included is a discussion of ground‐breaking results from a stereo digital mammography clinical trial under way at Emory University.  相似文献   

12.
虚拟三维空间是现实世界的数字化三维空间,而人眼立体视觉空间则是人眼视觉系统对于现实世界或虚拟世界所形成的三维立体构象。传统上人眼直接观察现实世界,确立了人眼立体视觉空间与现实世界之间的几何对应关系。而人眼立体视觉空间与虚拟三维空间是否也存在对应的几何关系?以人眼立体视觉和虚拟三维场景为研究对象,根据双目视差原理,论述了人眼立体视觉的几何模型及视觉三维模型的表示形式。通过分析虚拟空间三维点元、屏幕视差及网膜视差等三者之间的内在几何关系,利用矩阵代数建立了虚拟空间与视觉空间之间的几何映射关系。这一映射关系表明视觉三维模型与虚拟三维模型之间存在一一对应关系,也反映了人眼视觉系统在虚拟空间中的可测量性质。本文创新性之处在于得到了视觉三维模型的完整表示,突破了传统上立体显示的定性感知,提供了定量分析的基础。这一工作对于在虚拟空间中的立体体验、虚拟交互以及立体测量等实践活动具有一定理论参考价值。  相似文献   

13.
Viewing positions of autostereoscopic 3D affect the observed 3D image quality. The response of the people who had little experience in viewing autostereoscopic 3D was investigated. Thirty participants with the normal stereoscopic vision were selected and took the visual evaluation of autostereoscopic 3D at the various viewing positions. Photograph was also taken for the quantitative analysis of the viewing zone characteristics and the uniformity of 3D screen of autostereoscopic 3D. In visual evaluation, the larger difference of good and bad 3D image quality was observed at the viewing distance of 300 cm than at other viewing distance. This result and the periodic trends accorded with the analysis of photos at various camera positions. From these, we found that even the unexperienced viewer can correctly evaluate whether 3D image quality is good or bad.  相似文献   

14.
针对自由双目立体视觉中由于摄像机旋转导致的摄像机外参数变化的问题,提出一种基于旋转轴标定的动态外参数获取方法。在多个不同位置,立体标定得到多组旋转平移矩阵,利用最小二乘法求解旋转轴参数;结合初始位置左右摄像机的内、外参数及旋转角度,实时获取左右摄像机的外参数。利用所提方法获取动态外参数,并对棋盘角点进行三维重建,平均误差为0.241mm,标准差为0.156mm;与基于多平面标靶的标定方法相比,精度高且操作简单。所提方法无需实时标定,可完成摄像机旋转情况下动态外参数的获取。  相似文献   

15.
Abstract— This paper describes a method for reducing the discrepancy between accommodation and convergence when viewing stereoscopic 3‐D images. The method uses a newly developed stereoscopic 3‐D display system with a telecentric optical system and a mobile LCD. The examination of a mono‐focal lens showed that a correction lens having the appropriate refractive power and conditions for presenting stereoscopic 3‐D images clearly reduces the discrepancy between accommodation and convergence. The authors also developed a stereoscopic 3‐D display that uses dynamic optical correction to reduce the discrepancy between accommodation and convergence. The display equalizes the theoretical points of accommodation and convergence. The purpose of the development was to expand the regeneration range of a stereoscopic 3‐D image having the appropriate accommodation. An evaluation of the developed display showed that it resolves the discrepancy between convergence and accommodation.  相似文献   

16.
In order to investigate visual experience for watching the autostereoscopic three‐dimensional (3D) projection display, we conduct a subjective evaluation experiment by a questionnaire when viewing video clips. Factor analysis is adopted to classify the evaluation items for the perpetual constructs of visual experience. Then a mixed design with repeated measurement analysis of variance with dimension and display duration as factors is carried out on the evaluation data to check the factorial effects and interactions for statistical significance. The results of factor analysis extract five factors including visual comfort, image quality, distortion, naturalness, and presence, which can be used as comprehensive indicators to evaluate the autostereoscopic 3D projection display. The results of analysis of variance indicate that image quality, which is used to assess two‐dimensional contents, is no longer applicable. It is necessary to give consideration to depth when evaluating 3D visual experience. Although 3D scenes enhance the overall subjective performance such as naturalness and presence, the health issues and stereoscopic distortion related to the introduction of depth cannot be ignored.  相似文献   

17.
Polarization imaging can retrieve inaccurate objects’ 3D shapes with fine textures, whereas coarse but accurate depths can be provided by binocular stereo vision. To take full advantage of these two complementary techniques, we investigate a novel 3D reconstruction method based on the fusion of polarization imaging and binocular stereo vision for high quality 3D reconstruction. We first generate the polarization surface by correcting the azimuth angle errors on the basis of registered binocular depth, to solve the azimuthal ambiguity in the polarization imaging. Then we propose a joint 3D reconstruction model for depth fusion, including a data fitting term and a robust low-rank matrix factorization constraint. The former is to transfer textures from the polarization surface to the fused depth by assuming their relationship linear, whereas the latter is to utilize the low-frequency part of binocular depth to improve the accuracy of the fused depth considering the influences of missing-entries and outliers. To solve the optimization problem in the proposed model, we adopt an efficient solution based on the alternating direction method of multipliers. Extensive experiments have been conducted to demonstrate the efficiency of the proposed method in comparison with state-of-the-art methods and to exhibit its wide application prospects in 3D reconstruction.  相似文献   

18.
The optimal viewing distance was proposed as a parameter for designing a parallax barrier 3D display. It can be designed based on simple geometric method and by considering the pitches of image display pixels and parallax barrier, or even including the aperture ratios of the image display pixels and parallax barrier. It can be analyzed by using ray tracing method. By considering the optical refraction index of the cover glass, the angular behavior of the system becomes more realistic; however, the geometric method is difficult to be used. We propose a revised method for estimating the view distance and angular behavior. In this paper, we have demonstrated a designated eye position (DEP) for each view and shown that multiple DEPs make a circular curve around the center of the display. We prove the new concept by comparing the optical ray tracing calculations and optical measurement.  相似文献   

19.
Abstract— Multi‐view spatial‐multiplexed autostereoscopic 3‐D displays normally use a 2‐D image source and divide the pixels to generate perspective images. Due to the reduction in the resolution of each perspective image for a large view number, a super‐high‐resolution 2‐D image source is required to achieve 3‐D image quality close to the standard of natural vision. This paper proposes an approach by tiling multiple projection images with a low magnification ratio from a microdisplay to resolve the resolution issue. Placing a lenticular array in front of the tiled projection image can lead to an autostereoscopic display. Image distortion and cross‐talk issues resulting from the projection lens and pixel structure of the microdisplay have been addressed with proper selection of the active pixel and adequate pixel grouping and masking. Optical simulation has shown that a 37‐in. 12‐view autostereoscopic display with a full‐HD (1920 × 1080) resolution can be achieved with the proposed 3‐D architecture.  相似文献   

20.
Stereoscopic (3‐D) movies have become widely popular all over the world. In addition, 3‐D TVs and mobile devices have already been introduced to the consumer market. However, while some manufacturers are introducing 3‐D cameras and movie studios are using proprietary solutions, there are no guidelines for consistently capturing high‐quality stereoscopic content. In this paper, a comprehensive stereoscopic image and video database with content captured at various distances from the camera lenses and under different lighting conditions will be presented. Subjective tests to assess the perceived 3‐D quality of these videos and images, which were shown on displays of different sizes, have been conducted. In addition, the horizontal parallax of the content was adjusted to verify via subjective tests whether this change could increase the viewer's quality of experience. Finally, guidelines of acquisition distances between the cameras and the real scene will be published.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号