首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our crystalline In–Ga–Zn oxide (IGZO) thin film has a c‐axis‐aligned crystal (CAAC) structure and maintains crystallinity even on an amorphous base layer. Although the crystal has c‐axis alignment, its a‐axis and b‐axis have random arrangement; moreover, a clear grain boundary is not observed. We fabricated a back‐channel‐etched thin‐film transistor (TFT) using the CAAC‐IGZO film. Using the CAAC‐IGZO film, more stable TFT characteristics, even with a short channel length, can be obtained, and the instability of the back channel, which is one of the biggest problems of IGZO TFTs, is solved. As a result, we improved the process of manufacturing back‐channel‐etched TFTs.  相似文献   

2.
Abstract— Through the realization of a blue‐phase‐mode (hereinafter, the operational mode of liquid crystal having a blue phase is referred to as a blue‐phase mode), a display using an improved field‐sequential method was confirmed to be capable of display at a frame rate of 180 fps (field frequency of 540 Hz) or higher. Under this condition, an image without annoyance caused by color breakup was obtained. Moreover, a novel field‐sequential AMLCD integrated with a scan driver by combining the liquid‐crystal‐display (LCD) technology using blue phase and oxide‐semiconductor technology has been developed.  相似文献   

3.
We developed flexible displays using back‐channel‐etched In–Sn–Zn–O (ITZO) thin‐film transistors (TFTs) and air‐stable inverted organic light‐emitting diodes (iOLEDs). The TFTs fabricated on a polyimide film exhibited high mobility (32.9 cm2/Vs) and stability by utilization of a solution‐processed organic passivation layer. ITZO was also used as an electron injection layer (EIL) in the iOLEDs instead of conventional air‐sensitive materials. The iOLED with ITZO as an EIL exhibited higher efficiency and a lower driving voltage than that of conventional iOLEDs. Our approach of the simultaneous formation of ITZO film as both of a channel layer in TFTs and of an EIL in iOLEDs offers simple fabrication process.  相似文献   

4.
5.
We have developed a polymer‐stabilized blue‐phase LCD in which the diffraction wavelength of blue‐phase liquid crystal is in the ultraviolet region and which is driven at a low voltage of V100 = 27 V. Prototypes of 3.4‐in polymer‐stabilized blue‐phase LCDs were made, which include a highly reliable crystalline oxide semiconductor. We succeeded in fabricating not a test cell but a display having a contrast ratio higher than 1000 : 1 for the first time in the world.  相似文献   

6.
The binary Bi–Sn was studied by means of SEM (Scanning Electron Microscopy)/EDS (Energy-Dispersive solid state Spectrometry), DTA (Differential Thermal Analysis)/DSC (Differential Scanning Calorimetry) and RT-XRD (Room Temperature X-Ray Diffraction) in order to clarify discrepancies concerning the Bi reported solubility in (Sn). It was found that (Sn) dissolves approximately 10 wt% of Bi at the eutectic temperature.

The experimental effort for the Bi–Zn system was limited to the investigation of the discrepancies concerning the solubility limit of Zn in (Bi) and the solubility of Bi in (Zn). Results indicate that the solubility of both elements in the respective solid solution is approximately 0.3 wt% at 200 C.

Three different features were studied within the Bi–Sn–Zn system. Although there are enough data to establish the liquid miscibility gap occurring in the phase diagram of binary Bi–Zn, no data could be found for the ternary. Samples belonging to the isopleths with w(Bi) 10% and w(Sn) 5%, 13% and 19% were measured by DTA/DSC. The aim was to characterize the miscibility gap in the liquid phase. Samples belonging to the isopleths with w(Sn) 40%, 58%, 77/81% and w(Zn) 12% were also measured by DTA/DSC to complement the study of Bi–Sn–Zn. Solubilities in the solid terminal solutions were determined by SEM/EDS. Samples were also analyzed by RT-XRD and HT-XRD (High Temperature X-Ray Diffraction) confirming the DTA/DSC results for solid state phase equilibria.  相似文献   


7.
Abstract— Non‐volatile memory effects of an all‐solution‐processed oxide thin‐film transistor (TFT) with ZnO nanoparticles (NPs) as the charge‐trapping layer are reported. The device was fabricated by using a soluble MgInZnO active channel on a ZrHfOx gate dielectric. ZnO NPs were used as the charge‐trapping site at the gate‐insulator—channel interface, and Al was used for source and drain electrodes. Transfer characteristics of the device showed a large clockwise hysteresis, which can be used to demonstrate its memory function due to electron trapping in the ZnO NP charge‐trapping layer. This memory effect has the potential to be utilized as a memory application on displays and disposable electronics.  相似文献   

8.
High‐mobility and highly reliable self‐aligned top‐gate oxide thin‐film transistor (TFTs) were developed using the aluminum reaction method. Al diffusion to the oxide semiconductor and homogenization of the oxygen concentration in the depth direction after annealing were confirmed by laser‐assisted atom probe tomography. The high mobility of the top‐gate TFT with amorphous indium tin zinc oxide channel was demonstrated to be 32 cm2/V s. A 9.9‐in. diagonal qHD active‐matrix organic light‐emitting diode (AM‐OLED) display was fabricated using a five‐mask backplane process to demonstrate an applicable solution for large‐sized and high‐resolution AM‐OLEDs.  相似文献   

9.
Abstract— A liquid‐crystal panel integrated with a gate driver and a source driver by using amorphous In—Ga—Zn‐oxide TFTs was designed, prototyped, and evaluated. By using the process of bottom‐gate bottom‐contact (BGBC) TFTs, amorphous In—Ga—Zn‐oxide TFTs with superior characteristics were provided. Further, for the first time in the world, a 4‐in. QVGA liquid‐crystal panel integrated with a gate driver and a source driver was developed by using BGBC TFTs formed from an oxide semiconductor. By evaluating the liquid‐crystal panel, its functionality was successfully demonstrate. Based on the findings, it is believed that the novel BGBC amorphous In—Ga—Zn‐oxide TFT will be a promising candidate for future large‐screen backplanes having high definition.  相似文献   

10.
We propose an in‐pixel temperature sensor using low‐temperature polycrystalline silicon and oxide (LTPO) thin‐film transistor (TFTs) for high‐luminance active matrix (AM) micro‐light‐emitting diode (LED) displays. By taking advantage of the different off‐current characteristics of p‐type LTPS TFTs and n‐type a‐IGZO TFTs under temperature change, we designed and fabricated a temperature sensor consists of only LTPO TFTs without additional sensing component or material. The fabricated sensor exhibits excellent temperature sensitivity of up to 71.8 mV/°C. In addition, a 64 × 64 temperature sensor array with 3T sensing pixel and integrated gate driver has also been fabricated, which demonstrates potential approach for maxing out the performance of high‐luminance AM micro‐LED display with real‐time in‐pixel temperature monitoring.  相似文献   

11.
Abstract— High‐performance top‐gate thin‐film transistors (TFTs) with a transparent zinc oxide (ZnO) channel have been developed. ZnO thin films used as active channels were deposited by rf magnetron sputtering. The electrical properties and thermal stability of the ZnO films are controlled by the deposition conditions. A gate insulator made of silicon nitride (SiNx) was deposited on the ZnO films by conventional P‐CVD. A novel ZnO‐TFT process based on photolithography is proposed for AMLCDs. AMLCDs having an aperture ratio and pixel density comparable to those of a‐Si:H TFT‐LCDs are driven by ZnO TFTs using the same driving scheme of conventional AMLCDs.  相似文献   

12.
We devised a threshold voltage compensation pixel circuit using back‐gate bias voltage. Variation in threshold voltages can be reduced to 10% in simulation while improving the saturation characteristics of a driving transistor. The pixel circuit can compensate not only threshold variation but also mobility variation. We fabricated a 5.29‐in Quad‐VGA organic light emitting diode display using this pixel circuit.  相似文献   

13.
In this study, the device structure of a white tandem organic light‐emitting diode (OLED) was changed to control the emission area and thereby achieve less luminance decay. A long‐life 13.5‐inch 4 K flexible c‐axis‐aligned crystal oxide semiconductor (CAAC‐OS) active‐matrix OLED with less color shift and high resolution was fabricated using this long‐life white OLED, transfer technology, and a CAAC‐OS field‐effect transistor.  相似文献   

14.
Abstract— This paper describes a charged‐coupled device (CCD) camera, which was developed for in‐field evaluation of the image quality of electronic‐display devices [such as cathode‐ray tubes (CRTs) and liquid‐crystal displays (LCDs)] used for medical applications. Contrary to traditional cameras for display‐image‐quality evaluation, this CCD camera does not require a sophisticated x‐y‐z translation stage for mounting and adjustment. Instead, it is handheld and pressed by gentle pressure against the display screen. It is controlled by a software package which was originally developed for display calibration according to the DICOM 14 gray‐scale standard display function (GSDF). This software package controls the camera gain when measurements are made at different display luminance, display test patterns, performs image analysis and displays the results of the measurements and calculations. The work concentrated on the measurement of modulation transfer function (MTF) and of signal‐to‐noise ratio (SNR) per display pixel. The MTF is derived from the Fourier transform of the line spread function (LSF). The single‐display‐pixel SNR is derived from the integration of the noise power spectrum (NPS) of a camera image taken of a display with a uniform luminance. It is demonstrated that the device can produce repeatable results in terms of MTF and SNR. MTFs were measured on three monochrome CRTs and five monochrome LCDs in order to study repeatability and similar quantities. The MTF was measured on a 5‐Mpixel LCD yielding values that lie within 3.5% of the average MTF at the Nyquist frequency and 4.0% of the maximum total sharpness (∫ MTF2 df). The MTF was also measured on a 9‐Mpixel LCD, yielding values that lie within 9.0% of the average MTF at the Nyquist frequency and 8.0% of the maximum total sharpness. The SNR was measured eight times on a 3‐Mpixel monochrome LCD at nine digital driving levels (DDLs). At a DDL of 185, the mean SNR was 15.694 and the standard deviation (Stdv) was 0.587. At a DDL of 65, the mean SNR was 5.675 and Stdv was 0.120.  相似文献   

15.
We investigated the electrical performance of Ti–IZO active‐channel layer thin‐film transistors (TFTs) using a radio frequency (RF) magnetron co‐sputtering system to co‐sputter IZO and Ti targets. The samples were fabricated by changing the RF gun power of the IZO. The other parameters such as the RF gun power of the Ti target, oxygen partial pressure [O2/(Ar + O2)], and initial and process pressure of the chamber were unchanged. Unlike the sample sputtered only with IZO, the thin films of the Ti–IZO samples could control the oxygen vacancy because Ti reacts with the oxygen in the IZO. Therefore, Ti–IZO thin films can suppress the carrier concentration and thus have an effect on the electrical performance of TFTs.  相似文献   

16.
Abstract— High‐performance and excellent‐uniformity thin‐film transistors (TFTs) having bottom‐gate structures are fabricated using an amorphous indium‐gallium‐zinc‐oxide (IGZO) film and an amorphous‐silicon dioxide film as the channel layer and the gate insulator layer, respectively. All of the 94 TFTs fabricated with an area 1 cm2 show almost identical transfer characteristics: the average saturation mobility is 14.6 cm2/(V‐sec) with a small standard deviation of 0.11 cm2/(V‐sec). A five‐stage ring‐oscillator composed of these TFTs operates at 410 kHz at an input voltage of 18 V. Pixel‐driving circuits based on these TFTs are also fabricated with organic light‐emitting diodes (OLED) which are monolithically integrated on the same substrate. It is demonstrated that light emission from the OLED cells can be switched and modulated by a 120‐Hz ac signal input. Amorphous‐IGZO‐based TFTs are prominent candidates for building blocks of large‐area OLED‐display electronics.  相似文献   

17.
Abstract— High‐performance solution‐processed oxide‐semiconductor (OS) thin‐film transistors (TFTs) and their application to a TFT backplane for active‐matrix organic light‐emitting‐diode (AMOLED) displays are reported. For this work, bottom‐gated TFTs having spin‐coated amorphous In‐Zn‐O (IZO) active layers formed at 450°C have been fabricated. A mobility (μ) as high as 5.0 cm2/V‐sec, ?0.5 V of threshold voltage (VT), 0.7 V/dec of subthreshold swing (SS), and 6.9 × 108 of on‐off current ratio were obtained by using an etch‐stopper (ES) structure TFT. TFTs exhibited uniform characteristics within 150 × 150‐mm2 substrates. Based on these results, a 2.2‐in. AMOLED display driven by spin‐coated IZO TFTs have also been fabricated. In order to investigate operation instability, a negative‐bias‐temperature‐stress (NBTS) test was carried out at 60°C in ambient air. The IZO‐TFT showed ?2.5 V of threshold‐voltage shift (ΔVT) after 10,800 sec of stress time, comparable with the level (ΔVT = ?1.96 V) of conventional vacuum‐deposited a‐Si TFTs. Also, other issues regarding solution‐processed OS technology, including the instability, lowering process temperature, and printable devices are discussed.  相似文献   

18.
Abstract— Positive‐current‐bias (PB) instability and negative‐bias—light‐illumination (NBL) instability in amorphous‐In—Ga—Zn—O (a‐IGZO) thin‐film transistors (TFTs) have been examined. The channel‐ thickness dependence indicated that the Vth instability caused by the PB stress is primarily attributed to defects in the bulk a‐IGZO region for unannealed TFTs and to those in the channel—gate‐insulator interface for wet‐annealed TFTs. The interface and bulk defect densities (Dit and Nss, respectively) are Dit = 4.8 × 1011 cm?2/eV and Nss = 7.0×1016 cm?3/eV for the unannealed TFT, which increased to 5.2×1011 cm?2/eV and 9.8×1016 cm?3/eV, respectively, by the PB stress test. These are reduced significantly to Dit = 0.82×1011 cm?2/eV and Nss = 3.2×1016 cm?3/eV for the wet‐annealed TFTs and are unchanged by the PB stress test. It was also found that the photo‐response of a‐IGZO TFTs begins at 2.3 eV of photon excitation, which corresponds to subgap states observed by photoemission spectroscopy. The origin of the NBL instability for the wet‐annealed TFTs is attributed to interface effects and considered to be a trap of holes at the channel‐gate—insulator interface where migration of the holes is enhanced by the electric field formed by the negative gate bias.  相似文献   

19.
Abstract— The effects of gate‐bias stress, drain‐bias stress, and temperature on the electrical parameters of amorphous‐indium gallium zinc oxide (a‐IGZO) thin‐film transistors have been investigated. Results demonstrate that the devices suffer from threshold‐voltage instabilities that are recovered at room temperature without any treatments. It is suggested that these instabilities result from the bias field and temperature‐assisted charging and discharging phenomenon of preexisting traps at the near‐interface and the a‐IGZO channel region. The experimental results show that applying a drain‐bias stress obviously impacts the instability of a‐IGZO TFTs; however, the instability caused by drain bias is not caused by hot‐electron generation as in conventional MOSFETs. And the degradation trend is affected by thermally activated carriers at high temperature.  相似文献   

20.
The structural, optical, and electrical properties of Si‐doped SnO2 (STO) films were investigated in terms of their potential applications for flexible electronic devices. All STO films were amorphous with an optical transmittance of ~90%. The optical band gap was widened as the Si content increased. The Hall mobility and carrier density were improved in the SnO2 with 1 wt% Si film, which was attributed to the formation of donor states. Si (1 wt%) doped SnO2 thin‐film transistor exhibited a good device performance and good stability with a saturation mobility of 6.38 cm2/Vs, a large Ion/Ioff of 1.44 × 107, and a SS value of 0.77 V/decade. The device mobility of a‐STO TFTs at different bending radius maintained still at a high level. These results suggest that a‐STO thin films are promising for fabricating flexible TFTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号