首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Arginine vasopressin (AVP) not only acts directly on blood vessels through V1 receptor stimulation but also may modulate adrenergic-mediated responses in animal experiments in vivo and in vitro. The aim of the present study was to investigate whether AVP can contribute to an abnormal adrenergic constrictor response of human saphenous veins. METHODS AND RESULTS: Saphenous vein rings were obtained from 32 patients undergoing coronary artery bypass surgery. The vein rings were suspended in organ bath chambers for isometric recording of tension. AVP (3x10[-9] mol/L) enhanced the contractions elicited by electrical field stimulation at 1, 2, and 4 Hz (by 80%, 70%, and 60%, respectively) and produced a leftward shift of the concentration-response curve to norepinephrine (half-maximal effective concentration decreased from 6.87x10[-7] to 1.04x10[-7] mol/L; P<.05). The V1 vasopressin receptor antagonist d(CH2)5Tyr(Me)AVP (10[-6] mol/L) prevented the potentiation evoked by AVP. The selective V1 receptor agonist [Phe,2 Orn8]-vasotocin (3x[-10]-9 mol/L) induced potentiation of electrical stimulation-evoked responses, which was also inhibited in the presence of the V1 receptor antagonist (10[-6] mol/L). In contrast, the V2 receptor agonist desmopressin (10[-9] to 10[-7] mol/L) did not modify neurogenic responses, and the V2 receptor antagonist [d(CH2)5, D-Ile,2 Ile,4 Arg8]-vasopressin (10[-8] to 10[-6] mol/L) did not prevent the potentiation induced by AVP. The dihydropyridine calcium antagonist nifedipine (10[-6] mol/L) did not affect the potentiating effect of AVP. CONCLUSIONS: The results suggest that low concentrations of AVP facilitate sympathetic neurotransmission and potentiate constrictor effects of norepinephrine in human saphenous veins. These effects appear to be mediated by V1 receptor stimulation and are independent of calcium entry through dihydropyridine calcium channels. Thus, AVP may contribute to vascular mechanisms involved in acute ischemic syndromes associated with venous grafts, particularly if the sympathetic nervous system is activated.  相似文献   

2.
1. The effect of oxytocin on endothelium-intact and endothelium-denuded segments of the human uterine artery rings was investigated. 2. In both types of preparation oxytocin induced contraction of human uterine artery with similar potency and efficacy (pEC50 values: 6.95 +/- 0.05 vs 7.06 +/- 0.01; maximal response values: 61 +/- 4.1% vs 63 +/- 5.1% for arteries with and without endothelium, respectively). 3. In contrast, human uterine arteries, both intact and denuded of endothelium, did not respond to the addition of the selective oxytocin receptor agonist, [Thr4, Gly7]oxytocin (10 nM(-1) microM). 4. The vasopressin receptor antagonists, [d(CH2)5Tyr(Me)]AVP (10-100nM) and [d(CH2)5,D-Ile2,Ile4]AVP (300 nM-3 microM) produced parallel rightward shifts of the curves for oxytocin. The Schild plots constrained to a slope of unity gave the following -log K(B) values: [d(CH2)5Tyr(Me)] AVP vs [d(CH2)5,D-Ile2,Ile4] AVP 9.24 vs 6.91 and 9.26 vs 6.84 for human uterine artery with intact and those denuded of endothelium, respectively. In contrast, in both types of preparations the oxytocin receptor antagonist, [d(CH2)5Tyr(OMe), 2Orn8]vasotocin (1 microM), did not significantly affect oxytocin-induced contractions. 5. The calculated pK(A) values for oxytocin itself also did not differ between preparations: 6.56 and 6.43 for human uterine artery with and without endothelium, respectively. In both types of preparations, the receptor reserve (K(A)/EC50) was close to unity (intact vs denuded: 3.9 vs 3.0). 6. It is concluded that, in human uterine artery, oxytocin induces contractions that are not modulated by the endothelium. It is likely that oxytocin acts as a partial agonist on human uterine artery, regardless of the endothelial condition. On the basis of differential antagonists affinity and affinity of oxytocin itself, it is probable that receptors involved in oxytocin-induced contraction in human uterine arteries belong to the V(1A) vasopressin receptors.  相似文献   

3.
The pharmacological profile and the acute and chronic aquaretic effects of OPC-41061, a novel nonpeptide human arginine vasopressin (AVP) V2-receptor antagonist, were respectively characterized in HeLa cells expressing cloned human AVP receptors and in conscious male rats. OPC-41061 antagonized [3H]-AVP binding to human V2-receptors (Ki = 0.43 +/- 0.06 nM) more potently than AVP (Ki = 0. 78 +/- 0.08 nM) or OPC-31260 (Ki = 9.42 +/- 0.90 nM). OPC-41061 also inhibited [3H]-AVP binding to human V1a-receptors (Ki = 12.3 +/- 0.8 nM) but not to human V1b-receptors, indicating that OPC-41061 was 29 times more selective for V2-receptors than for V1a-receptors. OPC-41061 inhibited cAMP production induced by AVP with no intrinsic agonist activity. In rats, OPC-41061 inhibited [3H]-AVP binding to V1a-receptors (Ki = 325 +/- 41 nM) and V2-receptors (Ki = 1.33 +/- 0. 30 nM), showing higher receptor selectivity (V1a/V2 = 244) than with human receptors. A single oral administration of OPC-41061 in rats clearly produced dose-dependent aquaresis. In treatment by multiple OPC-41061 dosing for 28 days at 1 and 10 mg/kg p.o. in rats, significant aquaretic effects were seen throughout the study period. As the result of aquaresis, hemoconcentration was seen at 4 hr postdosing although, no differences were seen in serum osmolality, sodium, creatinine and urea nitrogen concentrations at 24 hr postdosing. Furthermore, there was no difference in serum AVP concentration, pituitary AVP content or the number and affinity of AVP receptors in the kidney and liver at trough throughout the study period. These results demonstrate that OPC-41061 is a highly potent human AVP V2-receptor antagonist and produces clear aquaresis after single and multiple dosing, suggesting the usefulness in the treatment of various water retaining states.  相似文献   

4.
The vasopressin receptor subtype involved in the enhancement by vasopressin of adrenoceptor-mediated vasoconstriction was investigated in rat isolated perfused mesenteric arteries. [Arg8]vasopressin (1-10 nM) dose-dependently increased the perfusion pressure and enhanced the pressor response to the adrenoceptor agonist methoxamine (40 nmol) or electrical stimulation of periarterial nerves (16 Hz), at the concentration of 10 nM of [Arg8]vasopressin up to 4 and 3 fold, respectively. During prolonged exposure (45 min) the direct vasoconstrictor effect of [Arg8]vasopressin (10 nM) rapidly declined whereas the potentiation of methoxamine-induced vasoconstriction was maintained. The selective vasopressin V1A receptor antagonist SR 49,059 (1-3 nM) and the non-selective V1A/B and oxytocin receptor antagonist [deamino-Pen1,Tyr(Me)2,Arg8]vasopressin (15-45 nM) inhibited the direct vasoconstrictor action of [Arg8]vasopressin but had no effect on the enhancement of the pressor response to methoxamine or electrical stimulation. The V1B receptor agonist [deamino-Cys1,beta-(3-pyridyl)-D-Ala2,Arg8]vasopressin (100-1000 nM) and the V2 receptor agonist [deamino-Cys1,D-Arg8]vasopressin (1-10 nM) were devoid of any pressor activity and did not potentiate methoxamine-evoked vasoconstriction. In contrast, [1-triglycyl,Lys8]vasopressin (100 - 1000 nM) potentiated the methoxamine responses without per se inducing vasoconstriction. In arteries precontracted with methoxamine (7.5 microM) pressor responses to [Arg8]vasopressin (3-10 nM) were not inhibited by a dose of SR 49,059 (3 nM) which abolished the peptide's vasoconstrictor effect under control conditions. These data show that the direct vasoconstrictor effect of [Arg8]vasopressin is mediated by V1A receptors while the enhancement of adrenoceptor-mediated pressor responses is insensitive to V1A, V1B, and oxytocin receptor antagonists and is not mimicked by selective agonists of V1B and V2 receptors. In conclusion, an unusual interaction of vasopressin with V1A receptors, or even the existence of a novel receptor subtype, has to be considered.  相似文献   

5.
To examine the effects of inotropic stimulation on regional myocardial blood flow (MBF), oxidative metabolism, and contractile function in stunned myocardium, nine closed-chest dogs were studied 2 hours postreperfusion after a 25 minute occlusion of the left anterior descending coronary artery (LAD). MBF was determined with microspheres, and regional myocardial oxygen consumption (MVO2) was estimated from the rate constant k1 of the rapid clearance phase of [1-11C] acetate time activity curves, recorded with dynamic positron emission tomography. Myocardium at risk was determined from [13N] ammonia images obtained during occlusion. Wall motion, assessed by two-dimensional echocardiography, was impaired in postischemic myocardium in all dogs 2 hours after reperfusion. Dobutamine infusion increased the rate pressure product by 70% +/- 31% and significantly improved contractile function in the postischemic region in all dogs. In remote myocardium, MVO2 increased from 5.7 +/- 1.2 to 8.6 +/- 1.6 mumol/gm/min, and blood flow from 0.87 +/- 0.16 to 1.52 +/- 0.42 ml/gm/min in response to dobutamine. In reperfused myocardium, MVO2 increased from 3.1 +/- 0.7 to 7.4 +/- 1.5 mumol/gm/min, and blood flow from 0.51 +/- 0.12 to 1.2 +/- 0.4 ml/gm/min. Oxygen extraction increased significantly in reperfused myocardium relative to remote myocardium consistent with a flow-limited response to dobutamine stimulation. The improvement in contractile function failed to correlate significantly with relative increases in MBF or MVO2, suggesting that mechanical function is not as tightly coupled as MBF and MVO2 in postischemic myocardium during inotropic stimulation.  相似文献   

6.
In freshly isolated rat CCD segments, the effects of arginine vasopressin (AVP), oxytocin (OT), adrenaline (Ad), and their specific receptor agonists and antagonists on the intracellular Ca2+ activity ([Ca2+]i) were measured using the Ca2+ sensitive dye Fura-2 as fluorescence indicator. We observed that AVP, the V1-receptor agonist [Phe2Orn8] vasotocin ([Phe2]OVT), and OT increased [Ca2+]i biphasically. AVP (n = 9) and OT (n = 8) induced increases in [Ca2+]i were completely blocked by the V1A-receptor antagonist d(CH2)5Tyr(Me)2AVP. However, neither the V2-receptor agonist [Val4-D-Arg8]AVP (100 nM, n = 5), nor the OT-receptor agonist [Thr4,Gly7]OT (100 nM, n = 5) nor forskolin (1 microM, n = 4 and 10 microM, n = 5) did significantly change [Ca2+]i. Ad and the beta-adrenoceptor agonist isoproterenol (ISO) increased [Ca2+]i, which was not mimicked by the alpha 2-adrenoceptor agonist clonidine (1 microM, n = 10) or the alpha 1-adrenoceptor agonist phenylephrine (1 microM, n = 5). The beta-adrenoceptor antagonist propranolol (1 microM) completely blocked this Ad (1 microM, n = 4) induced [Ca2+]i increase. Insulin (INS 10 nM, n = 8), endothelin (ET 1 microM, n = 6), and angiotensin II (Ang II 1 pM to 10 nM; each n = 4) had no significant effect on [Ca2+]i. Considering the present results we propose a V1A-receptor and beta-adrenoceptor dependent modulation of [Ca2+]i in rat CCD.  相似文献   

7.
Localization and characterization of binding sites of the selective non-peptide vasopressin receptor V1a ligand, [3H]-SR 49059, were investigated in the adult rat kidney by quantitative autoradiography using a fast-detecting radioluminographic phosphor-imaging plate system. [3H]-SR 49059, like the other V1a ligands used, showed a total absence of binding in the papilla, discrete and sparse labeling in the cortex and maximal binding in the outer part of the inner medulla. This labeling seemed to be mainly associated with medullary interstitial cells and vascular elements of the vasa recta. Conversely, [3H]-AVP intensely labeled the V2-enriched medulla-papillary portion of the kidney and, to a lesser extent, the cortical structures. [3H]-SR 49059 binding, quantified in the outer part of the inner medulla in rat kidney sections, was time-dependent, reversible, saturable and a single class of high affinity binding sites (Kd = 1.48 +/- 0.16 nM) was identified. The relative potencies of the reference peptide and non-peptide compounds to inhibit [3H]-SR 49059 binding confirm the V1a nature of the site and the stereospecificity of this binding. Thus, [3H]-SR 49059 allows the mapping and characterization of the V1a receptor population present in the rat kidney. The stability and the highly selective affinity of this non-peptide ligand for rat and human V1a receptors make it a suitable probe for the localization of V1a receptors in organs expressing heterogeneous populations of receptors.  相似文献   

8.
Fourteen acutely hypophysectomized, anesthetized dogs were given a constant infusion of arginine vasopressin (AVP) and 131I-labeled arginine vasopressin ([131I]AVP). After 90 min, 3 blood samples were collected at 15 min intervals for determination of total body clearances of immunoreactive AVP and immunoreactive [131I]AVP. Seven dogs were then nephrectomized. Ninety minutes later, a second set of 3 blood samples was collected at 15 min intervals for clearance measurements in these and the 7 time-control dogs. Prenephrectomy AVP clearance averaged 5.1+/-1.0 ml/min-kg (mean +/- SE, n=7), and the 210-240 min postnephrectomy AVP clearance average 4.9+/-0.8. The 90-120 min average clearance in the time-control dogs was 6.1+/-0.9 ml/min-kg (n=7) and AVP clearance in these dogs increased (P less than 0.01) with time to 7.3+/-0.9 ml/min-kg during the 210-240 min period of constant infusion. Although the postnephrectomy AVP clearance was not significantly changed from prenephrectomy levels, it was significantly lower (P less than 0.05) than the 210-240 min average clearance in the time-controls. Clearance of [131I]AVP was 3.3+/-0.2 ml/min-kg (n=7) before nephrectomy and 2.9+/-0.2 ml/min-kg after nephrectomy. This was a significant 12% reduction (P less than 0.01). [131I]AVP clearance in the time control dogs was 3.9+/-0.3 during 90-120 min of infusion and 3.9+/-0.4 during 210-240 min of infusion. [131I]AVP clearance before nephrectomy was 79+/-12% of AVP clearance (P less than 0.005) and afther nephrectomy was 74+/-16% of AVP clearance (P less than 0.05). Although these results might suggest that [131I]AVP clearance is at least a qualitative indicator of AVP clearance, there was no significant correlation (P less than 0.20) between AVP clearance and [131I]AVP clearance.  相似文献   

9.
Administration of a low dose of endotoxin (from Escherichia coli, 3 mg kg(-1), i.v.), which does not affect vascular permeability or blood pressure over 1 h, leads to the release of endogenous vasopressin and damage to the mucosal microvasculature. Thus, endogenous vasopressin could be involved in septic shock. In the present study, we investigated the role of endogenous vasopressin in gastrointestinal mucosal injury induced by acute endotoxin shock, which was generated in rats by administering a high dose of E. coli endotoxin (50 mg kg(-1), i.v.). Tissues were removed 15 min after endotoxin. The vasopressin V1 receptor antagonist, d[CH2]5Tyr[Me]arginine-vasopressin (0.2-1 microg kg(-1), i.v.), was injected 10 min before endotoxin. Monastral blue (30 mg kg(-1), i.v.), which stains damaged vasculature, was injected 10 min before autopsy. Endotoxin reduced systemic arterial blood pressure (from 115+/-5 to 42+/-4 mmHg), generated macroscopic and microvascular injury, and elevated plasma vasopressin levels (from 3.4+/-0.2 to 178+/-16 pg ml(-1)). The vasopressin V1 receptor antagonist reduced this macroscopic injury, and in the vasopressin-deficient Brattleboro rat a similar reduction of gastrointestinal mucosal damage was found. Substantial decreases in endotoxin-induced microvascular damage were observed in each tissue, e.g., the gastric Monastral blue staining was reduced by 47+/-3% and 96+/-3% (P < 0.01) after vasopressin V1 receptor antagonist treatment and in Brattleboro rats, respectively. Vasopressin, acting through its V1 receptors, thus appears to be involved in acute endotoxin shock-provoked gastrointestinal injury.  相似文献   

10.
1. The effects of intracerebroventricularly (i.c.v.) injected substance P (SP), neurokinin A (NKA) and [MePhe7]neurokinin B (NKB) were investigated on renal excretion of water, sodium and potassium in the conscious saline-loaded rat. The central effects of [MePhe7]NKB were characterized with selective tachykinin antagonists for NK1 (RP 67580), NK2 (SR 48968) and NK3 (R 820) receptors. 2. Whereas SP or NKA (65 or 650 pmol) failed to modify the renal responses, [MePhe7]NKB (65-6500 pmol) produced dose-dependent and long-lasting (30-45 min) decreases in renal excretion of water (maximal reduction at 65 pmol: from 66.14 +/- 7.62 to 21.07 +/- 3.79 microliters min-1), sodium (maximal reduction at 65 pmol: from 10.19 +/- 2.0 to 1.75 +/- 0.48 mumol min-1) and potassium (maximal reduction at 65 pmol: from 4.31 +/- 1.38 to 0.71 +/- 0.27 mumol min-1). While 650 pmol [MePhe7]NKB elevated urinary osmolality, neither 65 pmol nor 6.5 nmol [MePhe7]NKB altered this parameter. 3. Both the antidiuresis and antinatriuresis induced by [MePhe7]NKB (65 pmol) were significantly blocked by the prior i.c.v. injection of R 820 (1.3 nmol, 5 min earlier), although the potassium excretion was only partially reduced. However, R 820 did not affect the antidiuresis and antinatriuresis elicited by endothelin-1 (1 pmol, i.c.v.). On its own, R 820 decreased renal potassium excretion with no effect on urinary osmolality and renal excretion of water and sodium. The i.c.v. co-injection of RP 67580 and SR 48968 (6.5 nmol each, 5 min earlier) failed to modify the renal responses to [MePhe7]NKB in a similar study. 4. The central effects of [MePhe7]NKB (65 pmol) on renal excretion were blocked by the prior i.v. administration of a linear peptide vasopressin V2 receptor antagonist (50 micrograms kg-1, 5 min earlier). 5. These results suggest that the central NK3 receptor, probably located in the hypothalamus, is implicated in the renal control of water and electrolyte homeostasis through the release of vasopressin in the conscious saline-loaded rat.  相似文献   

11.
Injection of kappa-agonist dynorphins and non-peptide kappa-agonists into the hippocampus induces a reduction in blood pressure. It has been postulated that kappa-opioid agonists and kappa-receptors are important in one mechanism of antihypertension and might have clinical potential for the treatment of hypertension. We have investigated whether chronic treatment with U-50488H and U-62066E, two non-peptide kappa-agonists, effects brain kappa 1- or kappa 2-receptor numbers or affinities in areas that might correlate with changes in blood pressure. kappa 1- and kappa 2-Opioid receptor affinities and densities were determined in cortex, hippocampus, hypothalamus, midbrain and pons after 14 days subcutaneous infusion of two non-peptide kappa-agonists, U-50488H and U-62066E, 9.6 mg kg day-1, by means of osmotic minipumps, to spontaneously hypertensive rats (SHR) and to Wistar-Kyoto (WKY) rats. This infusion significantly reduced blood pressure. Brains were removed within 48 h of the end of drug infusion and kappa-receptor binding studies were performed on homogenates from each brain area using [3H]U-69593 to assay kappa 1-receptors and [3H]bremazocine to assay kappa 2-receptors. U-62066E treatment seemed to cause a slight decrease in the number of [3H]bremazocine binding sites (kappa 2-receptors) from 98.2 +/- 9 to 74.9 +/- 8 fmol (mg protein)-1 in the hippocampus when compared with SHR controls. A small decrease in kappa 2-receptor density in the pons of WKY rats was also observed after U-50488H treatment (control, 51.2 +/- 5; U-50488H-treated, 24.3 +/- 9 fmol (mg protein)-1. Although SHR blood pressure values were consistently reduced by treatment with kappa-agonists, there was little if any significant change in apparent numbers of kappa 1- or kappa 2-receptors or their affinities in any of the brain regions examined. These data indicate that although chronic treatment with kappa-agonists reduces blood pressure in SHR, the treatment does not elicit major changes in brain kappa-receptors either in SHR or in WKY rats. The potential use of kappa-agonists for treating hypertension might not cause receptor changes in the brain and might, therefore, result in fewer side effects or negligible rebound hypertension.  相似文献   

12.
The extent and timing of posttraumatic cerebral hemodynamic disturbances have significant implications for the monitoring and treatment of patients with head injury. This prospective study of cerebral blood flow (CBF) (measured using 133Xe clearance) and transcranial Doppler (TCD) measurements in 125 patients with severe head trauma has defined three distinct hemodynamic phases during the first 2 weeks after injury. The phases are further characterized by measurements of cerebral arteriovenous oxygen difference (AVDO[2]) and cerebral metabolic rate of oxygen (CMRO[2]). Phase I (hypoperfusion phase) occurs on the day of injury (Day 0) and is defined by a low CBF calculated from cerebral clearance curves integrated to 15 minutes (mean CBF 32.3 +/- 2 ml/100 g/minute), normal middle cerebral artery (MCA) velocity (mean V[MCA] 56.7 +/- 2.9 cm/second), normal hemispheric index ([HI], mean HI 1.67 +/- 0.11), and normal AVDO(2) (mean AVDO[2] 5.4 +/- 0.5 vol%). The CMRO, is approximately 50% of normal (mean CMRO(2) 1.77 +/- 0.18 ml/100 g/minute) during this phase and remains depressed during the second and third phases. In Phase II (hyperemia phase, Days 1-3), CBF increases (46.8 +/- 3 ml/100 g/minute), AVDO(2) falls (3.8 +/- 0.1 vol%), V(MCA) rises (86 +/- 3.7 cm/second), and the HI remains less than 3 (2.41 +/- 0.1). In Phase III (vasospasm phase, Days 4-15), there is a fall in CBF (35.7 +/- 3.8 ml/100 g/minute), a further increase in V(MCA) (96.7 +/- 6.3 cm/second), and a pronounced rise in the HI (2.87 +/- 0.22). This is the first study in which CBF, metabolic, and TCD measurements are combined to define the characteristics and time courses of, and to suggest etiological factors for, the distinct cerebral hemodynamic phases that occur after severe craniocerebral trauma. This research is consistent with and builds on the findings of previous investigations and may provide a useful temporal framework for the organization of existing knowledge regarding posttraumatic cerebrovascular and metabolic pathophysiology.  相似文献   

13.
1. The relative ability of the renal and femoral vascular beds to remove infused angiotensin II and noradrenaline was examined in anaesthetized greyhounds. 2. The degree of extraction of infused drug by each vascular bed was expressed as a percentage, calculated by comparing the pressor response to intra-arterial infusion with that obtained when the same dose was administered by the intravenous route. 3. When compared with the same dose given intravenously, the pressor responses after renal artery administration of angiotensin II were reduced by a mean of 77.8 +/- 4.1% (mean +/- SEM, n = 12), whereas those after femoral artery infusions at the same dose were reduced by a mean of only 27.2 +/- 4.9% (n = 12). 4. The pattern of extraction seen with noradrenaline infusions administered in a similar manner was the reverse of that with angiotensin II. There was a 28.9 +/- 6.8% (n = 7) reduction in pressor responses to renal artery infusions; in contrast, femoral artery infusions of the same dose exhibited a 99.0 +/- 1.0% (n = 7) reduction in the pressor responses. 5. Local arterial administration of the angiotensin II competitive antagonist, [Sar1,Ile8]angiotensin II, potentiated the systemic pressor responses to renal artery infusions of angiotensin II, but not those to femoral artery infusions. 6. It is suggested that the marked ability of the renal vascular bed to remove circulating angiotensin II may, in part, involve receptor-binding, although this seems not to be the case in the femoral vascular bed.  相似文献   

14.
OBJECTIVES: This study was undertaken to examine whether a dihydropyridine Ca channel blocker, benidipine, increases cardiac NO levels, and thus coronary blood flow (CBF) in ischemic hearts. BACKGROUND: Benidipine protects endothelial cells against ischemia and reperfusion injury in hearts. METHODS AND RESULTS: In open chest dogs, coronary perfusion pressure (CPP) of the left anterior descending coronary artery was reduced so that CBF decreased to one-third of the control CBF, and thereafter CPP was maintained constant (103+/-8 to 42+/-1 mmHg). Both fractional shortening (FS: 6.1+/-1.0%) and lactate extraction ratio (LER: -41+/-4%) decreased. Ten minutes after the onset of an intracoronary infusion of benidipine (100 ng/kg/min), CBF increased from 32+/-1 to 48+/-4 ml/100g/ min during 20 min without changing CPP (42+/-2 mmHg). Both FS (10.7+/-1.2%) and LER (-16+/-4%) also increased. Benidipine increased cardiac NO levels (11+/-2 to 17+/-3 nmol/ml). The increases in CBF, FS, LER and cardiac NO levels due to benidipine were blunted by L-NAME. Benidipine increased cyclic GMP contents of the coronary artery of ischemic myocardium (139+/-13 to 208+/-15 fmol/mg protein), which was blunted by L-NAME. CONCLUSION: Thus, we conclude that benidipine mediates coronary vasodilation and improves myocardial ischemia through NO-cyclic GMP-dependent mechanisms.  相似文献   

15.
Near-ultraviolet difference absorption and circular dichroism (CD) spectra were recorded upon recombination of synthetic S-peptide analogs, i.e. 1epsilon, 7epsilon-diguanidino-[Tyr8]-,1epsilon,7epsilon-diguanidono-[Asn14]-, [Phe(F)8, Orn10]- and 1epsilon, 7epsilon-diguanidino-S-peptide, with S-protein. Environmental alterations of Phe-8 in the S-peptide and Tyr-25 in the S-protein, derived from the association process, lead to strong optical signals whose location and magnitude were clearly defined by means of a comparative analysis of the above spectra. Additionally, the spectroscopic effects resulting from insertion of a tyrosyl residue into an hydrophobic environment in the presence or absence of hydrogen-bonding partners were identified and compared with similar findings obtained from the model compound p-cresol.  相似文献   

16.
1. Endothelium-derived nitric oxide (NO) contributes to the regulation of vascular tone and blood pressure. Infusion of L-arginine produces systemic vasodilatation via stimulation of endogenous NO formation. Vasodilatation is accompanied by an increase in peripheral arterial blood flow. However, it is not known whether capillary nutritive blood flow increases as well. The time course and dose-response pattern of this effect remain to be elucidated. 2. Two groups of ten patients with peripheral vascular disease (PVD) received an intravenous infusion of 8 g or 30 g of L-arginine over a period of 40 min. Blood pressure and heart rate were monitored non-invasively. Muscular blood flow (MBF) of the calf was determined at 0, 20, 40, 60, 80 min by positron emission tomography with H215O as flow tracer. Plasma L-arginine and cyclic GMP (cGMP) levels were determined at the same time points. 3. L-arginine induced a dose-related decrease in blood pressure during the infusion period. MBF and plasma cGMP levels during and after the infusion of 8 g of L-arginine did not change significantly. In the patients receiving 30 g of L-arginine, MBF was enhanced significantly from 1.56 +/- 0.14 to 2.09 +/- 0.21 ml min-1 100 ml-1 at 40 min and 2.23 +/- 0.15 ml min-1 100 ml-1 after 80 min (+43.0%). The increase in MBF was paralleled by an increase in plasma cGMP from 4789.8 +/- 392.2 nmol/l at baseline to 9223.2 +/- 1233.6 nmol/l at 40 min. 4. We conclude that intravenous L-arginine enhances nutritive capillary MBF in patients with PVD via the NO-cGMP pathway in a dose-related manner. This effect might be therapeutically beneficial in patients with PVD.  相似文献   

17.
1. We tested the hypothesis that nitric oxide (NO) exerts a tonic inhibitory influence on cytochrome P450 (CYP450)-dependent metabolism of arachidonic acid (AA). 2. N(omega)-nitro-L-Arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), increased mean blood pressure (MBP), from 91+/-6 to 137+/-5 mmHg, renal vascular resistance (RVR), from 9.9+/-0.6 to 27.4+/-2.5 mmHg ml(-1) min(-1), and reduced renal blood flow (RBF), from 9.8+/-0.7 to 6.5+/-0.6 ml min(-1)) and GFR from 1.2+/-0.2 to 0.6+/-0.2 ml 100 g(-1) min(-1)) accompanied by diuresis (UV, 1.7+/-0.3 to 4.3+/-0.8 microl 100 g(-1) min (-1)), and natriuresis (U(Na)V, 0.36+/-0.04 to 1.25+/-0.032 micromol 100 g(-1) min(-1)). 3. 12, 12 dibromododec-enoic acid (DBDD), an inhibitor of omega hydroxylase, blunted L-NAME-induced changes in MBP, RVR, UV and U(Na)V by 63+/-8, 70+/-5, 45+/-8 and 42+/-9%, respectively, and fully reversed the reduction in GFR by L-NAME. Clotrimazole, an inhibitor of the epoxygenase pathway of CYP450-dependent AA metabolism, was without effect. 4. BMS182874 (5-dimethylamino)-N-(3,4-dimethyl-5-isoxazolyl)-1-naphthalenesulfo namide), an endothelin (ET)A receptor antagonist, also blunted the increases in MBP and RVR and the diuresis/natriuresis elicited by L-NAME without affecting GFR. 5. Indomethacin blunted L-NAME-induced increases in RVR, UV and U(Na)V. BMS180291 (1S-(1alpha,2alpha,3alpha,4alpha)]-2-[[3-[4-[(++ +pentylamino)carbonyl]-2-oxazolyl]-7-oxabicyclo[2.2.1]hept-2-yl ]methyl]benzenepropanoic acid), an endoperoxide receptor antagonist, attenuated the pressor and renal haemodynamic but not the renal tubular effects of L-NAME. 6. In conclusion, the renal functional effects of the CYP450-derived mediator(s) expressed after inhibition of NOS with L-NAME were prevented by inhibiting either CYP450 omega hydroxylase or cyclooxygenase or by antagonizing either ET(A) or endoperoxide receptors. 20-hydroxyeicosatetraenoic acid (20-HETE) fulfils the salient properties of this mediator.  相似文献   

18.
OBJECTIVES: This study was designed to investigate disturbances in arterial blood pressure and body fluid homeostasis in stable heart transplant recipients. BACKGROUND: Hypertension and fluid retention frequently complicate heart transplantation. METHODS: Blood pressure, renal and endocrine responses to acute volume expansion were compared in 10 heart transplant recipients (57 +/- 9 years old [mean +/- SD]) 20 +/- 5 months after transplantation, 6 liver transplant recipients receiving similar doses of cyclosporine (cyclosporine control group) and 7 normal volunteers (normal control subjects). After 3 days of a constant diet containing 87 mEq/24 h of sodium, 0.154 mol/liter saline was infused at 8 ml/kg per h for 4 h. Blood pressure and plasma vasopressin, angiotensin II, aldosterone, atrial natiuretic peptide and renin activity levels were determined before and at 30, 60, 120 and 240 min during the infusion. Urine was collected at 2 and 4 h. Blood pressure, fluid balance hormones and renal function were monitored for 48 h after the infusion. RESULTS: Blood pressure did not change in the two control groups but increased in the heart transplant recipients (+15 +/- 8/8 +/- 5 mm Hg) and remained elevated for 48 h (p < or = 0.05). Urine flow and urinary sodium excretion increased abruptly in the control groups sufficient to account for elimination of 86 +/- 9% of the sodium load by 48 h; the increases were blunted (p < or = 0.05) and delayed in the heart transplant recipients, resulting in elimination of only 51 +/- 13% of the sodium load. Saline infusion suppressed vasopressin, renin activity, angiotensin II and aldosterone in the two control groups (p < or = 0.05) but not in the heart transplant recipients. Heart transplant recipients had elevated atrial natriuretic peptide levels at baseline (p < or = 0.05), but relative increases during the infusion were similar to those in both control groups. CONCLUSIONS: Blood pressure in heart transplant recipients is salt sensitive. These patients have a blunted diuretic and natriuretic response to volume expansion that may be mediated by a failure to reflexly suppress fluid regulatory hormones. These defects in blood pressure and fluid homeostasis were not seen in liver transplant recipients receiving cyclosporine and therefore cannot be attributed to cyclosporine alone. Abnormal cardiorenal neuroendocrine reflexes, secondary to cardiac denervation, may contribute to salt-sensitive hypertension and fluid retention in heart transplant recipients.  相似文献   

19.
Abnormalities in renal handling of calcium, magnesium, or phosphate have been implicated in the development and/or maintenance of human hypertension. We have shown recently that renal excretion of these ions is correlated to blood pressure in Dahl salt-sensitive as well as salt-resistant rats. The present study was designed to determine whether renal perfusion pressure per se could affect excretion of these ions. Urinary excretion of calcium, magnesium, and phosphate was studied in anaesthetized Sprague-Dawley rats under basal conditions and during an intravenous infusion of angiotensin II (ANG II), vasopressin (AVP) or phenylephrine (PE). A cuff, placed around the aorta between the two renal arteries, allowed maintenance of normal perfusion pressure in the left kidney, while that in the right kidney was allowed to rise. Infusion of pressor agents raised mean arterial blood pressure to comparable levels (means +/- SE): ANG II (n = 7), before = 102 +/- 4, during = 133 +/- 3 mmHg, AVP (n = 8), before = 110 +/- 7, during = 136 +/- 5 mmHg, PE (n = 6), before = 111 +/- 6, during = 141 +/- 6 mmHg. Although there was no difference in excretion of calcium, magnesium and phosphate between the two kidneys under basal conditions, infusion of ANG II or PE induced hypercalciuria, hypermagnesiuria and hyperphosphaturia in the right kidney which was exposed to the increased arterial pressure. Such effects did not appear in the pressure-controlled left kidney. Infusion of AVP was associated with reduced excretion of calcium and magnesium, and increased excretion of phosphate, in the normotensive kidney. The response to the similarly increased renal perfusion pressure in this group was also reduced for calcium and magnesium, and enhanced for phosphate. The results indicate (1) renal excretion of calcium, magnesium and phosphate is renal perfusion pressure-dependent; the higher the renal perfusion pressure, the greater the excretion of these ions. (2) Independently of perfusion pressure, AVP can inhibit phosphate reabsorption and stimulate divalent cation reabsorption.  相似文献   

20.
The contribution of gluconeogenic precursors to renal glucose production (RGP) during insulin-induced hypoglycemia was assessed in conscious dogs. Ten days after surgical placement of sampling catheters in the right and left renal veins and femoral artery and an infusion catheter in the left renal artery, systemic and renal glucose and glycerol kinetics were measured with peripheral infusions of [6-3H]glucose and [2-13C]glycerol. Renal blood flow was determined with a flowprobe, and the renal balance of lactate, alanine, and glycerol was calculated by arteriovenous difference. After baseline, six dogs received 2-h simultaneous infusions of peripheral insulin (4 mU x kg(-1) x min(-1)) and left intrarenal [6,6-2H]dextrose (14 micromol x kg(-1) x min(-1)) to achieve and maintain left renal normoglycemia during systemic hypoglycemia. Arterial glucose decreased from 5.3 +/- 0.1 to 2.2 +/- 0.1 mmol/l; insulin increased from 46 +/- 5 to 1,050 +/- 50 pmol/l; epinephrine, from 130 +/- 8 to 1,825 +/- 50 pg/ml; norepinephrine, from 129 +/- 6 to 387 +/- 15 pg/ml; and glucagon, from 52 +/- 2 to 156 +/- 12 pg/ml (all P < 0.01). RGP increased from 1.7 +/- 0.4 to 3.0 +/- 0.5 (left) and from 0.6 +/- 0.2 to 3.2 +/- 0.2 (right) micromol x kg(-1) x min(-1) (P < 0.01). Whole-body glycerol appearance increased from 6.0 +/- 0.5 to 7.7 +/- 0.7 micromol x kg(-1) x min(-1)(P < 0.01); renal conversion of glycerol to glucose increased from 0.13 +/- 0.04 to 0.30 +/- 0.10 (left) and from 0.11 +/- 0.03 to 0.25 +/- 0.05 (right) micromol x kg(-1) x min(-1), (P < 0.05). Net renal gluconeogenic precursor uptake increased from 1.5 +/- 0.4 to 5.0 +/- 0.4 (left) and from 0.9 +/- 0.2 to 3.8 +/- 0.4 (right) micromol x kg(-1) x min(-1) (P < 0.01). Renal lactate uptake could account for approximately 40% of postabsorptive RGP and for 60% of RGP during hypoglycemia. These results indicate that gluconeogenic precursor extraction by the kidney, particularly lactate, is stimulated by counterregulatory hormones and accounts for a significant fraction of the enhanced gluconeogenesis induced by hypoglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号