首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas holdup, ?, and volumetric mass transfer coefficient, kLa, were measured in a 0.051 m diameter glass column with ethanol as the liquid phase and cobalt catalyst as the solid phase in concentrations of 1.0 and 3.8 vol.‐%. The superficial gas velocity U was varied in the range from 0 to 0.11 m/s, spanning both the homogeneous and heterogeneous flow regimes. Experimental results show that increasing catalyst concentration decreases the gas holdup to a significant extent. The volumetric mass transfer coefficient, kLa, closely follows the trend in gas holdup. Above a superficial gas velocity of 0.04 m/s the value of kLa/? was found to be practically independent of slurry concentration and the gas velocity U; the value of this parameter is found to be about 0.45 s–1. Our studies provide a simple method for the estimation of kLa in industrial‐size bubble column slurry reactors.  相似文献   

2.
The gas‐liquid mass transfer behavior of syngas components, H2 and CO, has been studied in a three‐phase bubble column reactor at industrial conditions. The influences of the main operating conditions, such as temperature, pressure, superficial gas velocity and solid concentration, have been studied systematically. The volumetric liquid‐side mass transfer coefficient kLa is obtained by measuring the dissolution rate of H2 and CO. The gas holdup and the bubble size distribution in the reactor are measured by an optical fiber technique, the specific gas‐liquid interfacial area aand the liquid‐side mass transfer coefficient kL are calculated based on the experimental measurements. Empirical correlations are proposed to predict kL and a values for H2 and CO in liquid paraffin/solid particles slurry bubble column reactors.  相似文献   

3.
The results are reported of an experimental study of the gas holdup, ?G, large bubble diameter, dLb, and large bubble rise velocity, VLb, in a 0.1 m wide, 0.02 m deep and 0.95 m high rectangular slurry bubble column operated at ambient temperature and pressure conditions. The superficial gas velocity U was varied in the range of 0–0.2 m/s, spanning both the homogeneous and heterogeneous flow regimes. Air was used as the gas phase. The liquid phase used was C9‐C11 paraffin oil containing varying volume fractions (?S = 0, 0.05, 0.10, 0.15, 0.20 and 0.25) of porous catalyst (alumina catalyst support, 10 % < 10 μm; 50 % < 16 μm; 90 % < 39 μm). With increasing slurry concentrations, ?G is significantly reduced due to enhanced bubble coalescence and for high slurry concentrations the “small” bubbles are significantly reduced in number. By the use of video imaging techniques, it was shown that the large bubble diameter is practically independent of the gas velocity for ?S > 0.05 and U > 0.1 m/s. The measured large bubble rise velocity VLb agrees with the predictions of a modified Davis‐Taylor relationship.  相似文献   

4.
The gas–liquid volumetric mass transfer coefficient was determined by the dynamic oxygen absorption technique using a polarographic dissolved oxygen probe and the gas–liquid interfacial area was measured using dual‐tip conductivity probes in a bubble column slurry reactor at ambient temperature and normal pressure. The solid particles used were ultrafine hollow glass microspheres with a mean diameter of 8.624 µm. The effects of various axial locations (height–diameter ratio = 1–12), superficial gas velocity (uG = 0.011–0.085 m/s) and solid concentration (εS = 0–30 wt.%) on the gas–liquid volumetric mass transfer coefficient kLaL and liquid‐side mass transfer coefficient kL were discussed in detail in the range of operating variables investigated. Empirical correlations by dimensional analysis were obtained and feed‐forward back propagation neural network models were employed to predict the gas–liquid volumetric mass transfer coefficient and liquid‐side mass transfer coefficient for an air–water–hollow glass microspheres system in a commercial‐scale bubble column slurry reactor. © 2012 Canadian Society for Chemical Engineering  相似文献   

5.
This study aims at applying artificial neural network (ANN) modeling approach in designing ozone bubble columns. Three multi-layer perceptron (MLP) ANN models were developed to predict the overall mass transfer coefficient (kLa, s?1), the gas hold-up (? G , dimensionless), and the Sauter mean bubble diameter (dS , m) in different ozone bubble columns using simple inputs such as bubble column's geometry and operating conditions. The obtained results showed excellent prediction of kLa, ? G , and dS values as the coefficient of multiple determination (R2 ) values for all ANN models exceeded 0.98. The ANN models were then used to determine the local mass transfer coefficient (kL , m.s?1). A very good agreement between the modeled and the measured kL values was observed (R2 ?=?0.85).  相似文献   

6.
A transient back flow cell model was used to model the hydrodynamic behaviour of an impinging-jet ozone bubble column. A steady-state back flow cell model was developed to analyze the dissolved ozone concentration profiles measured in the bubble column. The column-average overall mass transfer coefficient, kLa (s?1), was found to be dependent on the superficial gas and liquid velocities, uG (m.s?1) and uL (m.s?1), respectively, as follows: kLa?=?55.58 · uG 1.26· uL 0.08 . The specific interfacial area, a (m?1), was determined as a = 3.61 × 103 · uG 0.902 · uL ?0.038 by measuring the gas hold-up (ε G?=?4.67 · uG 1.11 · uL ?0.05 ) and Sauter mean diameter, dS (mm), of the bubbles (dS?=?7.78 · uG 0.207 · uL ? 0.008 ). The local mass transfer coefficient, kL (m.s?1), was then determined to be: kL?=?15.40 · uG 0.354 · uL 0.118 .  相似文献   

7.
The main objective of this work was to propose a new process for household fume incineration treatment: the droplet column. A feature of this upward gas‐liquid reactor which makes it original, is to use high superficial gas velocities (13 m s–1) which allow acid gas scrubbing at low energy costs. Tests were conducted to characterize the hydrodynamics, mass transfer performances, and acid gas scrubbing under various conditions of superficial gas velocity (from 10.0 to 12.0 m s–1) and superficial liquid velocity (from 9.4·10–3 to 18.9·10–3 m s–1). The following parameters characterized the hydrodynamics: pressure drops, liquid hold‐ups, and liquid residence time distribution were identified and investigated with respect to flow conditions. To characterize mass transfer in the droplet column, three parameters were determined: the gas‐liquid interfacial area (a), the liquid‐phase volumetric mass transfer coefficient (kLa) and the gas‐phase volumetric mass transfer coefficient (kGa). Gas absorption with chemical reaction methods were applied to evaluate a and kGa, while a physical absorption method was used to estimate kLa. The influence of the gas and liquid velocities on a, kLa, and kGa were investigated. Furthermore, tests were conducted to examine the utility of the droplet column for the acid gas scrubbing, of gases like hydrogen chloride (HCl) and sulfur dioxide (SO2). This is a process of high efficiency and the amount of pollutants in the cleaned air is always much lower than the regulatory European standards imposed on household waste incinerators.  相似文献   

8.
The hydrodynamics of bubble columns with concentrated slurries of paraffin oil (density, ρL = 790 kg/m3; viscosity, μL = 0.0029 Pa·s; surface tension, σ = 0.028 N·m1) containing silica particles (mean particle diameter dp = 38 μm) has been studied in columns of three different diameters, 0.1, 0.19 and 0.38 m. With increasing particle concentration, the total gas hold‐up decreases significantly. This decrease is primarily caused by the destruction of the small bubble population. The hold‐up of large bubbles is practically independent of the slurry concentration. The measured gas hold‐up with the 36% v paraffin oil slurry shows remarkable agreement with the corresponding data obtained with Tellus oil (ρL = 862 kg/m3; μL = 0.075 Pa·s; σ = 0.028 N·m?1) as the liquid phase. Dynamic gas disengagement experiments confirm that the gas dispersion in Tellus oil also consists predominantly of large bubbles. The large bubble hold‐up is found to decrease significantly with increasing column diameter. A model is developed for estimation of the large bubble gas hold‐up by introduction of an wake‐acceleration factor into the Davies‐Taylor‐Collins relation (Collins, 1967), describing the influence of the column diameter on the rise velocity of an isolated spherical cap bubble.  相似文献   

9.
H. Jin  D. Liu  S. Yang  G. He  Z. Guo  Z. Tong 《化学工程与技术》2004,27(12):1267-1272
The volumetric gas‐liquid mass transfer coefficient, kLα, for oxygen was studied by using the dynamic method in slurry bubble column reactors with high temperature and high pressure. The effects of temperature, pressure, superficial gas velocity and solids concentration on the mass transfer coefficient are systemically discussed. Experimental results show that the gas‐liquid mass transfer coefficient increases with the increase in pressure, temperature, and superficial gas velocity, and decreases with the increase in solids concentration. Moreover, kLα values in a large bubble column are slightly higher than those in a small one at certain operating conditions. According to the analysis of experimental data, an empirical correlation is obtained to calculate the values of the oxygen volumetric mass transfer coefficient for a water‐quartz sand system in two bubble columns with different diameter at high temperature and high pressure.  相似文献   

10.
The volumetric gas-liquid oxygen transfer coefficient, kL a, and the liquid–solid coefficient, kS, were measured in a 6.7 L external loop airlift bubble column (ELBC), a 2.5 L internal loop airlift (ILBC) and a 2.5 L normal bubble column (NBC) by the steady state method proposed previously using the oxidation of glucose with air catalyzed by glucose oxidase, GO. For an improved and simultaneous determination of kL a and kS, GO was entrapped in calcium alginate gel beads together with fine palladium particles instead of catalase to decompose the hydrogen peroxide produced. The gas holdup, ?G, in each type of bubble column and the liquid circulation velocity, uL, governing ?G in the ELBC were also measured to correlate the data on kLa according to the previous correlations proposed for a larger scale of the ELBC, ILBC and NBC. The data on kL a, kS, ?G and uL (only for the ELBC) in the reaction system were compared to each other for the three types of bubble columns. The results are well predicted by the previous correlations.  相似文献   

11.
Characteristics of heat transfer were investigated in pressurized slurry bubble column reactors whose diameter was either 0.051, 0.076, 0.102 or 0.152 m (ID) and 1.5 m in height, respectively. Effects of gas velocity (U G ), solid contents (S C ), pressure (P), liquid viscosity (μ L ) and column diameter (D) on the heat transfer coefficient (h) between the immersed vertical heater and the column were determined. Multiple effects such as UG and D, P and D, μ L and D, and S C and D on the value of heat transfer coefficient were discussed. Temperature fluctuations were also measured and analyzed by adapting chaos theory, which was used to explain the effects of operating variables on the heat transfer in the column. The heat transfer coefficient increased with increasing gas velocity, pressure or solid content in the slurry phase, but decreased with increasing liquid viscosity or column diameter. The decrease trend of h with increasing column diameter was somewhat sensitive when the gas velocity was relatively high (U G ⩾12 cm/s). The effects of column diameter on the h value became almost linear when the operating pressure (P=4−10 kg f /cm2), liquid viscosity (μ L =20−38 mPa·s) or solid content in the slurry phase (S C =10−20 wt%) was relatively high and gas velocity was relatively low, within these experimental conditions. The heat transfer coefficient was well correlated in terms of dimensionless groups as well as operating variables.  相似文献   

12.
BACKGROUND: The Fischer–Tropsch process is the most important path for converting natural gas to high quality liquid hydrocarbons. Low temperature Fischer–Tropsch synthesis in slurry bubble column reactors with cobalt‐based catalysts is used for mid‐distillates production. RESULTS: In this work the slurry bubble column reactor was simulated by applying the two‐bubble class mathematical model. In addition, the effect of operating parameters on synthesis gas conversion was studied. The distribution of products was also predicted from the simulation framework. CONCLUSIONS: The effect of synthesis gas inlet velocity on mid‐distillates production rate was studied in the present work. A maximum production rate for mid‐distillates of about 23 kg s?1 was predicted from the simulation program. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
The liquid dispersion and bubble distribution in the radial direction have been investigated in the riser of a three‐phase circulating fluidized bed whose diameter is 0.102m and 3.5m in height. Effects of gas and liquid velocities and solid circulation rate have been determined. It has been found that the radial distribution of bubbles is related closely to the liquid dispersion in the radial direction. The size and rising velocity of bubbles tend to increase as the radial position approaches to the center of the riser. The bubble size increases with increasing UG, but it decreases with increasing UL or GS in all radial positions. The radial dispersion coefficient of the liquid phase increases with increasing UG or GS, however, it tends to decrease with increasing UL. The value of Dr has been well correlated in terms of dimensionless groups based on the isotropic turbulence model.  相似文献   

14.
The hydrodynamic and mass transfer characteristics of bubble and packed bubble columns with downcomer were investigated. The contactor consisted of two concentric columns of 0.11 and 0.2 m i.d., with the annulus acting as the downcomer. The packing used in this investigation was standard 16 mm stainless steel Pall rings. The superficial gas and liquid velocities, VG and VL, were varied from 0.01 to 0.09 and 1 × 10?3 to 8.8 × 10?3 m s?1 respectively. Two flow patterns, namely the bubble and pulse flows were observed in the packed bubble column with downcomer, as shown by a flow map. The liquid circulation velocity in both the contactors was observed to be constant throughout the ranges of VG and VL covered in this work. The effect of liquid viscosity (0.8 to 9.5 mPa ? s) and surface tension (45 to 72 mN m?1) on the flow pattern, liquid circulation, gas hold-up and pressure drop was investigated. The pressure drop characteristics across the two contactors have been compared with those across a bubble column. Values of the effective interfacial area, a, and the volumetric mass transfer coefficient, kL a, were measured by using chemical methods. Values of a as high as 180 and 700 m?1 and kL a as high as 0.075 and 0.22 s?1, in the bubble and packed bubble columns with downcomer, respectively, were obtained. The values of true liquid-side mass transfer coefficient, kL, were found to be independent of VG and were of the order of 5.5 × 10?4 and 3.5 × 10?4 m s?1, respectively, in the two contactors.  相似文献   

15.
In this work the sulfite oxidation (SOM), dynamic pressure‐step (DPM) and gassing‐out (GOM) methods were compared for volumetric mass transfer coefficient measurement in an airlift reactor with internal loop. As a liquid phase both, non‐coalescent and coalescent media were used. Among the methods discussed here, the mass transfer coefficient (kLa) values obtained by the DPM appear as the most reliable as they were found to be independent of oxygen concentration in the inlet gas, which confirmed the physical correctness of this method. The difference between data measured using air and oxygen was not higher than 10%, which was comparable to the scatter of experimental data. It has been found that the sulfite oxidation method yielded kLa values only a little higher than those obtained by the DPM and the difference did not exceed 10%. Up to an inlet gas velocity (UGC) of ?0.03 m s?1 the GOM using oxygen as a gas medium gave kLa values in fact identical with those obtained by the DPM. At higher flows of the inlet gas, the GOM yielded kLa values as much as 15% lower. The enhancement in oxygen mass transfer rate determined in non‐coalescent media was estimated to be up to +15%, when compared with a coalescent batch. The experimental dependence of kLa vs the overall gas hold‐up was described by an empirical correlation. 1 Copyright © 2004 Society of Chemical Industry  相似文献   

16.
We investigate uniform gas injection using a needle sparger as a structuring methodology to reduce backmixing in slurry bubble columns. Using optical probes, we determined the gas fraction and the bubble behaviour in 2D and 3D slurry bubble columns with a uniform gas injection. Experimental results for air–water–glass beads (ds = 108 µm, Usg = 0–0.10 m/s) indicate that a strong reduction in the vortical structures has been achieved and the homogeneous flow regime can be extended beyond 30% gas fraction. Increasing the solids concentration decreases the gas fraction and widens the bubble velocity distribution. Furthermore, we show by modelling that the reduced backmixing leads to a major improvement of the conversion in case of Fischer–Tropsch synthesis.  相似文献   

17.
An experimental investigation was made to measure interfacial area, a, and liquid‐side volumetric mass transfer coefficient, kLa, in a downflow bubble column by chemical methods viz., absorbing CO2 in aqueous sodium hydroxide and sodium carbonate/bicarbonate buffer solution respectively. The effect of gas and liquid flowrate and nozzle sizes on a and kLa were investigated. The experimental data obtained in the present system were analyzed and correlations were developed to predict a and kLa in terms of superficial gas velocity. The variation of a and kLa with specific power input were shown in graphical plot and compared with other gas‐liquid systems.  相似文献   

18.
The mass transfer characteristics of 0.2, 0.6 and 1.0 m diameter bubble columns having a low height to diameter ratio (0.6 < H/D < 4) and operated at low superficial gas velocities (0.01 < VG < 0.08 m/s) were investigated. Different types of spargers were used to study their effect on the column performance. The values of effective interfacial area, a , and volumetric mass transfer coefficient, kL a , were measured by using chemical methods. The values of a and kL a were found to vary from 40 to 420 m2/m3 of clear liquid volume and from 0.01 to 0.16 s?1, respectively, in the range of VG, and VL covered in this investigation. The value of the liquid-side mass transfer coefficient, kL, was found to vary from 3 × 10?4 to 7 × 104 m/s. The effect of the physical properties of the system on the values of a was also investigated. The height to diameter ratio and the column diameter did not have significant effect on the values of gas holdup, a and kL a . It was found that the sparger design is not of critical importance, provided multipoint/multiorifice gas spargers are used. The comparative performance of bubble columns having low H/D with horizontal sparged contactors and tall bubble columns has been considered.  相似文献   

19.
In this work, the gas‐liquid mass transfer in a lab‐scale fibrous bed reactor with liquid recycle was studied. The volumetric gas‐liquid mass transfer coefficient, kLa, is determined over a range of the superficial liquid velocity (0.0042–0.0126 m.s–1), gas velocity (0.006–0.021 m.s–1), surface tension (35–72 mN/m), and viscosity (1–6 mPa.s). Increasing fluid velocities and viscosity, and decreasing interfacial tension, the volumetric oxygen transfer coefficient increased. In contrast to the case of co‐current flow, the effect of gas superficial velocity was found to be more significant than the liquid superficial velocity. This behavior is explained by variation of the coalescing gas fraction and the reduction in bubble size. A correlation for kLa is proposed. The predicted values deviate within ± 15 % from the experimental values, thus, implying that the equation can be used to predict gas‐liquid mass transfer rates in fibrous bed recycle bioreactors.  相似文献   

20.
A comprehensive experimental characterization of a small-scale bubble column bioreactor (60 mL) is presented. Bubble size distribution (BSD), gas holdup, and kLa were determined for different types of liquids, relevant fermentation conditions and superficial gas velocities uG. The specific interfacial area a and liquid mass transfer coefficient kL have been identified independent of each other to unravel their individual impact on kLa. Results show that increasing uG leads to larger bubbles and higher gas holdup. As both parameters influence a in opposite ways, no increase of a with uG is found. Furthermore, kL increases with increasing bubble size outlining that improved oxygen transfer is not the result of higher a but of risen kL instead. The results build the foundation for further simulative investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号