首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
高强度钢在钢结构工程中的应用可以促进科技进步,还可以带来显著的经济和社会效益,是钢结构工程发展和进步的必然趋势。为了推动Q550高强度钢在我国钢结构工程中的应用,首先研究了Q550钢材的力学性能。按照两种长细比设计了6个高强焊接H形柱试件,对其进行了轴心受压承载力试验,研究分析了Q550高强度钢焊接H形钢柱的轴心受压的极限承载力、荷载-位移曲线。对构件的承载力和稳定系数进行了理论和试验结果的对比分析。结果表明:Q550高强度钢焊接H形柱轴心受压破坏是失稳破坏,使用性能很好,试验承载力高于按照现行《钢结构设计规范》(GB 50017—2003)计算的值,试验得到的稳定系数也高于规范规定的值。  相似文献   

2.
焊接H型PEC组合短柱轴心受压试验研究   总被引:2,自引:0,他引:2  
为了研究这种新型组合柱的受力性能,对9个焊接普通H型钢部分包裹混凝土组合短柱进行了轴压试验,试验主要考虑含钢率、翼缘宽厚比、横向系杆间距等对柱子的极限承载力的影响。通过分析得出,在不同含钢率下,影响PEC短柱承载力的因素。同时含钢率大小直接影响柱极限承载能力。  相似文献   

3.
为研究高强H形钢混凝土组合柱的轴心受压性能以及探究国内外现行规范对此类构件承载力计算方法的适用性,对12根内置Q460、Q690高强H形钢混凝土组合柱及3根内置Q235普通H形钢混凝土组合柱进行轴压试验,研究钢材强度等级、含钢率、长细比和配箍率等参数对构件承载力的影响。试验结果表明:内置Q460、Q690高强H形钢混凝土组合柱与内置Q235普通H形钢混凝土组合柱相比,承载力最大提高幅度分别为19.6%和35.8%;高强H形钢含钢率的提升能显著提高组合柱的承载力;当组合柱长细比在23.0~45.9范围变化时,其对承载力影响不明显;提高配箍率对内置Q690的H形钢混凝土组合柱承载力的提高幅度高于内置Q460的H形钢混凝土组合柱。将试验结果与我国JGJ 138—2016《组合结构设计规范》、美国ANSI/AISC 360-16和欧洲EN1994-1-1:2004中的H形钢混凝土组合柱轴压承载力公式计算值进行对比可得,各国规范的计算值均偏于保守,JGJ 138—2016的计算值与试验结果最为接近。考虑箍筋对混凝土的约束效应,对JGJ 138—2016的组合柱轴压承载力计算公式进行修正,修正公式所得承载力计算结果与试验结果误差降低至10%以内。基于约束效应建立组合柱有限元模型,考虑约束效应的承载力有限元模拟结果与试验结果吻合良好,误差在5%以内。  相似文献   

4.
为研究高强H形钢混凝土组合柱的轴心受压性能以及探究国内外现行规范对此类构件承载力计算方法的适用性,对12根内置Q460、Q690高强H形钢混凝土组合柱及3根内置Q235普通H形钢混凝土组合柱进行轴压试验,研究钢材强度等级、含钢率、长细比和配箍率等参数对构件承载力的影响。试验结果表明:内置Q460、Q690高强H形钢混凝土组合柱与内置Q235普通H形钢混凝土组合柱相比,承载力最大提高幅度分别为19.6%和35.8%;高强H形钢含钢率的提升能显著提高组合柱的承载力;当组合柱长细比在23.0~45.9范围变化时,其对承载力影响不明显;提高配箍率对内置Q690的H形钢混凝土组合柱承载力的提高幅度高于内置Q460的H形钢混凝土组合柱。将试验结果与我国JGJ 138—2016《组合结构设计规范》、美国ANSI/AISC 360-16和欧洲EN1994-1-1:2004中的H形钢混凝土组合柱轴压承载力公式计算值进行对比可得,各国规范的计算值均偏于保守,JGJ 138—2016的计算值与试验结果最为接近。考虑箍筋对混凝土的约束效应,对JGJ 138—2016的组合柱轴压承载力计算公式进行修正,修正公式所得承载力计算结果与试验结果误差降低至10%以内。基于约束效应建立组合柱有限元模型,考虑约束效应的承载力有限元模拟结果与试验结果吻合良好,误差在5%以内。  相似文献   

5.
为研究部分包裹钢-混凝土组合轴压柱的整体稳定性能与设计方法,完成了两个试件的试验。利用有限元软件ABAQUS建立部分包裹钢-混凝土组合柱数值分析模型,并对比试验数据校核模型准确性。利用该数值模型进行参数分析,考虑材料强度、组合柱长细比、含钢率、纵筋和系杆的布置对该类轴压构件整体稳定性能的影响,分别获得不同因素影响下构件绕强轴和绕弱轴的极限承载力。结果表明,材料强度、系杆间距及含钢率对稳定性能的影响均较为显著,纵筋对轴压稳定性能的影响可以忽略。基于数值模拟结果,按照不同含钢率进行归类分析,拟合出稳定系数曲线,并考虑材料强度组合和系杆间距的影响,对稳定系数曲线进行修正,获得适用于PEC柱的轴压整体稳定系数计算方法。基于现行规范,引入可靠度指数,得到PEC柱截面承载力计算公式,进而提出适用于部分包裹钢-混凝土组合柱的轴压整体稳定设计方法。  相似文献   

6.
为研究高强H形钢混凝土组合柱的偏心受压性能以及验证采用国内外相关规范计算此类构件承载力的可行性,进行了1∶3缩尺的10根内置Q460、Q690高强H形钢混凝土组合柱与2根内置Q235普通H形钢混凝土组合柱的偏心受压试验,研究型钢钢材牌号、相对偏心距、含钢率与箍筋间距对组合柱偏压承载力与延性的影响。研究结果表明:当型钢钢材牌号由Q235提升至Q460、Q690时,组合柱的承载力和延性均有明显提升,型钢钢材牌号为Q690的组合柱承载力提高幅度略高于Q460的,其位移延性系数提高幅度明显高于Q460的;增大相对偏心距和含钢率可显著提升高强H形钢混凝土组合柱的延性;较小箍筋间距有利于充分发挥Q690高强H形钢的材料性能。将试验结果与按我国JGJ 138—2016《组合结构设计规范》、欧洲EN 1994-1-1:2004以及美国ANSI/AISC360-16得到的型钢组合柱偏压承载力计算结果进行对比。结果表明,按EN 1994-1-1:2004、ANSI/AISC360-16得到的高强H形钢组合柱偏压承载力计算结果与试验结果相差较大,总体上偏于保守;按JGJ 138—2016的计算结果与试验结果...  相似文献   

7.
陈鹏  孙舒 《工业建筑》2023,(5):35-40+117
为研究组合十字形钢管混凝土柱承压性能(轴压、偏压)和承载力计算方法,以有限元软件ABAQUS分析为主要研究手段,结合已有的6个试件的实测数据,并以偏心距、长细比、截面含钢率、混凝土强度等级和钢材屈服强度为变化参数进行了26个试件的拓展分析,探讨了各影响参数对组合十字形钢管混凝土柱承压性能的影响,分别研究了组合十字形钢管混凝土柱轴心受压柱和偏心受压柱的极限承载力计算方法,并提出实用设计算式。研究结果表明:组合十字形钢管混凝土柱极限承载力随着偏心距和长细比的增加而降低,随着含钢率、混凝土强度和钢材屈服强度的提高而提高,其中偏心距和混凝土强度较小时承载力退化较快,承载力随含钢率的增加呈近线性增长,槽钢强度的提高更能提高试件的承载能力。基于约束混凝土理论提出的组合十字形钢管混凝土承压(轴压、偏压)极限承载力计算方法有较好的适用性。  相似文献   

8.
为了考察国产Q460高强钢焊接H形柱的轴心受压力学性能,对6个已有焊接H形柱的轴心受压试验进行了数值分析。数值分析采用作者编制的数值积分法电算程序和通用有限元软件ANSYS。以考虑了实测初始挠度、初始偏心及简化残余应力分布的数值模型,计算Q460高强钢焊接H形柱轴心受压的极限承载力与荷载-挠度曲线。发现数值积分法与有限单元法所计算试件的荷载-挠度曲线基本重合。为了验证数值模型的准确性,将数值分析结果与已有试验结果进行对比;并通过对比简化残余应力分布模型与实测残余应力分布对试件极限承载力、荷载-挠度曲线的影响,检验简化残余应力分布模型的准确性。结果表明:考虑了初始几何缺陷及简化残余应力模型的数值积分法与有限单元法均可较为准确地预测Q460钢焊接H形柱的受压力学行为。采用简化残余应力模型预测Q460钢焊接H形柱极限承载力较实测残余应力分布偏保守。  相似文献   

9.
任志刚  张铭  刘闯  王丹丹 《建筑结构》2021,51(14):62-68
为了研究圆端形钢管混凝土中长柱轴压性能,考虑长细比、含钢率、高宽比3个变化参数,设计了 6个试件进行轴压静力单调加载试验,得到了试件的破坏形态、极限承载力、荷载-位移曲线、荷载-应变曲线等数据,并分析参数变化对承载力的影响.试验结果表明:圆端形钢管混凝土中长柱受力过程经历弹性阶段、屈服阶段与破坏阶段,破坏形态为弹塑性失稳破坏;试件承载力与含钢率呈正相关,与长细比呈负相关,对于高宽比较大的试件,含钢率对承载力的影响更大.基于有限元软件ABAQUS的参数分析,建立圆端形钢管混凝土中长柱轴心受压承载力简化公式,计算结果与试验结果吻合良好.  相似文献   

10.
以混凝土工作系数为参数,研究部分包裹高强混凝土柱(PEC柱)的抗震性能,对6根焊接H形钢部分包裹高强混凝土柱进行低周反复荷载试验。结果表明:不同设计参数下PEC柱的柱顶荷载-位移滞回曲线均为饱满的梭形,在柱翼缘厚度不变的情况下,混凝土工作系数从0.36提升至0.39时,PEC柱的极限荷载提升了7.5%,最大水平位移变化不大;混凝土工作系数从0.39提升至0.44时,PEC柱的极限荷载提升了2.1%,极限位移减小了16.98%,这是由于高强混凝土的脆性导致的。混凝土强度不变,混凝土工作系数从0.40减至0.36,PEC柱位移延性系数增加36.97%,改变翼缘厚度,降低混凝土工作系数对PEC柱的延性提升较为明显。位移角为1/35时,PEC柱承载力退化系数在0.95~0.99之间,位移延性系数在3.61~4.25之间,仍能保持良好的承载性能,且耗能系数均在2.0以上。此种PEC柱有良好的耗能能力和抗震性能,适用于抗震设防区的建筑结构中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号