首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Copolymers of aniline and toluidine were synthesized by oxidative chemical polymerization using different ratios of the monomers in the feed, and characterized by a number of techniques including UV–visible, IR, Raman, 1H NMR and EPR spectroscopies, as well as by thermogravimetric analysis and conductivity measurements. The properties of the copolymers are influenced by the amount of toluidine in the copolymer. Poly(o‐toluidine) and poly(m‐toluidine) are noticeably different in their solubility and conductivity. The copolymers show better solubilities than polyaniline but have lower conductivities. Differences in the properties of the salt and base forms of the copolymers are pointed out. Copyright © 2003 Society of Chemical Industry  相似文献   

2.
Poly (o‐toluidine) (POT) salts doped with organic sulfonic acids (β‐naphthalene sulfonic acid, camphor sulfonic acid, and p‐toluene sulfonic acid) were directly synthesized by using a new solid‐state polymerization method. The FTIR spectra, ultraviolet visibility (UV–vis) absorption spectra, and X‐ray diffraction patterns were used to characterize the molecular structures of the POT salts. Voltammetric study was done to investigate the electrochemical behaviors of all these POT salts. The FTIR and UV–vis absorption spectra revealed that the POT salts were composed of mixed oxidation state phases. All POT salts contained the conducting emeraldine salt (half‐oxidized and protonated form) phase; the pernigraniline (fully oxidized form) phase is predominant in POT doped with β‐naphthalene sulfonic acid, and POT doped with p‐toluene sulfonic acid had the highest doping level. The X‐ray diffraction patterns showed that the obtained POT doped with organic sulfonic acids were lower at crystallinity. The conductivity of the POT salts were found to be of the order 10?3‐10?4 S/cm. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1630–1634, 2005  相似文献   

3.
Poly(o‐toluidine) (PoT) and poly(o‐toluidine co aniline) were prepared by using ammonium persulfate initiator, in the presence of 1M HCl. It was dried under different conditions: room temperature drying (48 h), oven drying (at 50°C for 12 h), or vacuum drying (under vacuum, at room temperature for 16 h). The dielectric properties, such as dielectric loss, conductivity, dielectric constant, dielectric heating coefficient, loss tangent, etc., were studied at microwave frequencies. A cavity perturbation technique was used for the study. The dielectric properties were found to be related to the frequency and drying conditions. Also, the copolymer showed better properties compared to PoT alone. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 592–598, 2004  相似文献   

4.
Copolymer nanofibrils composed of pyrrole and aniline had been prepared by synthesizing the desired polymer within the pores of microporous anodic aluminum oxide (AAO) template membrane. To analyze their structure and properties, FTIR spectra were taken and thermogravimetric analysis (TGA) was applied. Also, the copolymer nanofibrils were photographed under scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for microstructure analysis, and the conductivities were obtained by the four‐probe method. The result of SEM and TEM revealed that the obtained copolymer nanofibrils had uniform and well‐aligned array, and their diameter and length can be controlled by changing the aspect ratios of the AAO membrane. The result of IR spectrometry and TGA indicated that both polypyrrole and polyaniline were involved in the copolymer. The obtained nanofibrils were identified to be copolymer rather than composite. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3002–3007, 2001  相似文献   

5.
The influence of inorganic and organic supporting electrolytes on the electrochemical, optical, and conducting properties of poly(o‐anisidine), poly(o‐toluidine), and poly(o‐anisidine‐coo‐toluidine) thin films was investigated. Homopolymer and copolymer thin films were synthesized electrochemically, under cyclic voltammetry conditions, in aqueous solutions of inorganic acids (H2SO4, HCl, HNO3, H3PO4, and HClO4) and organic acids (benzoic acid, cinnamic acid, oxalic acid, malonic acid, succinic acid, and adipic acid) at room temperature. The films were characterized by cyclic voltammetry, ultraviolet–visible spectroscopy, and conductivity measurements with a four‐probe technique. The ultraviolet–visible spectra were obtained ex situ in dimethyl sulfoxide. The optical absorption spectra indicated that the formation of the conducting emeraldine salt (ES) phase took place in all the inorganic electrolytes used, whereas in organic acid supporting electrolytes, ES formed only with oxalic acid. Moreover, the current density and conductivity of the thin films was greatly affected by the nature and size of the anion present in the electrolyte. For the copolymer, the conductivity lay between the conductivity of the homopolymers, regardless of the supporting electrolyte used. The formation of the copolymer was also confirmed with differential scanning colorimetry. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2634–2642, 2003  相似文献   

6.
Graft copolymerization of poly(aniline) and poly(o‐toluidine) onto poly(ethylene terephthalate) fiber was conducted by using peroxydisulfate as a lone initiator under nitrogen atmosphere at various experimental conditions in aqueous hydrochloric acid medium. The grafting of poly(aniline) and poly(o‐toluidine) onto poly(ethylene terephthalate) fiber was verified by recording cyclic voltammetry of the grafted fiber, conductivity measurements, and thermal analysis. Graft parameters—such as % grafting, % efficiency, and the rate of grafting—were followed. Grafting was always accompanied by homopolymerization. The rate of homopolymerization was also followed in all experimental conditions. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 121–128, 1999  相似文献   

7.
High‐conversion (HC) copolymers of aniline and o‐methoxyaniline (o‐anizidine) were synthesized for the first time by chemical oxidative copolymerization using various polymerization techniques (simultaneous or consecutive introduction of comonomers into the polymerizing system). Low‐conversion (LC) copolymers have also been synthesized for comparison. The polymers obtained were characterized using 1H‐NMR, infrared, and electronic absorption spectroscopy, differential scanning calorimetry, and electrical conductivity measurements. Solubility characteristics and composition of different fractions of the copolymers were also determined. It was shown that in contrast to the LC copolymers, HC copolymers reveal relatively poor solubility. Electrical conductivity of copolymers and also of o‐methoxyaniline homopolymer is lower compared to polyaniline, which correlates with notable hypsochromic (blue) shift of the bands in electronic absorption spectra. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 75–81, 2006  相似文献   

8.
High‐conversion (HC) copolymers of aniline and o‐methoxyaniline (o‐anizidine) were synthesized for the first time by chemical oxidative copolymerization by using various polymerization techniques (simultaneous or consecutive introduction of comonomers into the polymerizing system). Low‐conversion (LC) copolymers have also been synthesized for comparison. The polymers obtained were characterized by using 1H‐NMR, infrared, and electronic absorption spectroscopy; differential scanning calorimetry; and electrical conductivity measurements. Solubility characteristics and composition of different fractions of the copolymers were also determined. It was shown that, in contrast to the LC copolymers, HC copolymers reveal relatively poor solubility. Electrical conductivity of copolymers and also of o‐methoxyaniline homopolymer is lower as compared to polyaniline, which correlates with notable hypsochromic (blue) shift of the bands in electronic absorption spectra. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1822–1828, 2005  相似文献   

9.
The commercial use of polyaniline has been impeded by its intractable nature and insolubility. The use of substituted polyaniline has been attempted mainly to increase the processibility of polyaniline, but this approach usually results in the lowering of the conductivity. This study reports the synthesis of poly(1‐naphthylamine), a fused ring derivative of polyaniline, and its copolymers with aniline and o‐toluidine via a chemical polymerization method. Spectral, thermal, morphological, and conductivity studies were carried out to elucidate the influence of the incorporation of aniline and o‐toluidine units into poly(1‐naphthylamine). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Uniform and strongly adherent poly(o‐toluidine) (POT) coatings have been synthesized on low carbon steel (LCS) substrates by electrochemical polymerization (ECP) of o‐toluidine under cyclic voltammetric conditions from an aqueous sodium tartrate solution. Cyclic voltammetry (CV), UV‐visible absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD) measurements, and scanning electron microscopy (SEM) were used to characterize these coatings, which indicates that the sodium tartrate is a suitable medium for the ECP of o‐toluidine and it occurs without noticeable dissolution of LCS. Corrosion protection properties of the POT coatings were evaluated in aqueous 3% NaCl by the potentiodynamic polarization measurements and CV. The result of the potentiodynamic polarization demonstrates that the POT coating has ability to protect the LCS against corrosion. The corrosion potential was about 334 mV more positive in aqueous 3% NaCl for the POT‐coated LCS than that of bare LCS and reduces the corrosion rate of LCS almost by a factor of 50. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 685–695, 2005  相似文献   

11.
The investigation of clay based polymer nanocomposites has opened the door for the development of novel, ecofriendly advanced nano materials that can be safely recycled. Because of their nanometer size dispersion, these nanocomposites often have superior physical and mechanical properties. In this study, novel nanocomposites of poly(o‐toluidine) (POT) and organically modified montmorillonite (MMT) were synthesized using camphor sulfonic acid (CSA), cetyl pyridinum chloride (CPCl), and N‐cetyl‐N,N,N‐trimethyl ammonium bromide (CTAB) to study the role of surfactant modification on the intercalation. The in situ intercalative polymerization of POT within the organically modified MMT layers was analyzed by FTIR, UV–visible, XRD, SEM as well as TEM studies. The average particle size of the nanocomposites was found to be in the range 80–100 nm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

12.
Conducting polyaniline (PAni)/activated carbon (AC) nanocomposites were synthesized by the in situ chemical polymerization method. The resultant shell–core PAni–AC nanocomposites were characterized by elemental analysis, Fourier transform infrared, scanning electron microscopy, thermal gravimetric analysis, X‐ray diffraction, and transmission electron microscopy. We did not observe any significant chemical interaction between the PAni and AC, only core–shell coupling between the AC and the tightly coated polymer chain was revealed. Measurement of the physical properties showed that the incorporation of conducting PAni on to AC particles during chemical synthesis increased electrical conductivity and thermal stability by several orders of magnitude to that of the pristine PAni powders. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1973–1977, 2007  相似文献   

13.
The direct electrochemical copolymerization of pyrrole (Py) and ε‐caprolactone at various monomer ratios was carried out by potentiostatic methods in nitromethane. Characterizations of the novel copolymer were based on scanning electron microscopy, differential scanning calorimetry, thermal gravimetrical analysis, cyclic voltammetry, electrochemical impedance spectroscopy, Fourier transform infrared spectra, and elemental analysis studies. The results showed that the electrochemical oxidation of Py and ε‐caprolactone comonomers generated true copolymers rather than blends of the two homopolymers. The electrical conductivity of the copolymers increased with the amount of polypyrrole in the copolymer between the value of 8.2 S/cm and 0.6 S/cm. A probable mechanism of copolymerization was proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The poly‐o‐toluidine (POT) was prepared under different magnetization in solution containing 0.5 mol dm?3o‐toluidine, 1.0 mol dm?3 HCl with and without 0.5 mol dm?3 DyCl3, respectively. Their conductivity, UV–vis, FTIR spectra, X‐ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) were investigated. The results of conductivity showed that magnetic field and the cooperative effect of Dy3+ and magnetic field do obvious effect to conductivity of POT. Meantime, they also can make the energy for the π–π* transitions and quinoid ring transition in UV–vis spectra smaller. At high magnetization the peaks of POT due to Q? NH+? B or B? NH+? B and C? H out of plane on 1,4‐ring or 1,2,4‐ring disappeared in FTIR spectra. Magnetic field and Dy3+ can make three dimensions morphologies of the POT clear, but they scarcely affect the crystallinity of POT. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2174–2179, 2007  相似文献   

15.
Polyaniline (PAN), poly(o‐bromoaniline) (POBA), and poly(aniline‐co‐o‐bromoaniline) (PABA) were synthesized by oxidative coupling. These polymers are protonated by 10–20% methane sulfonic acid (MSA) and 1M HCl. The new polymer bases have greater solubility than that of PAN in common polar organic solvents; PAN–MSA was observed to be the most thermally stable of these polymers. POBA is associated with residual quinoid diimine units as illustrated in the IR and UV‐vis spectra, after reduction with hydrazine dihydrochloride. Both the doping agents cause a downward shift of the quinoid absorption in the IR spectra. MSA‐ and HCl‐doped PAN and PABA polymers exhibit a coil‐like conformation in DMSO, whereas only MSA‐doped PAN and PABA show an “expanded coil‐like” conformation in m‐cresol with a “free carrier tail” above 800 nm in their electronic spectra. XPS spectra indicated the presence of covalent bromine in the POBA and PABA polymers. Bromine retention was greater in the homopolymer as evidenced by the IR studies after aging at 350°C. Compared to HCl, MSA is found to be a more effective dopant, enhancing the conductivity of the copolymers by 102–103 times in magnitude. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2662–2669, 2002  相似文献   

16.
Strongly adherent poly(aniline‐coo‐toluidine) coatings were synthesized on low‐carbon‐steel substrates by the electrochemical copolymerization of aniline with o‐toluidine with sodium tartrate as the supporting electrolyte. These coatings were characterized with cyclic voltammetry, ultraviolet–visible absorption spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and scanning electron microscopy. The formation of the copolymer with the mixture of monomers in the aqueous sodium tartrate solution was ascertained by a critical comparison of the results obtained from the polymerizations of the individual monomers, aniline and o‐toluidine. The optical absorption spectrum of the copolymer was drastically different from the spectra of the respective homopolymers, polyaniline and poly(o‐toluidine). The extent of the corrosion protection offered by poly(aniline‐coo‐toluidine) coatings to low‐carbon steel was investigated in aqueous 3% NaCl solutions by open‐circuit‐potential measurements and a potentiodynamic polarization technique. The results of the potentiodynamic polarization measurements showed that the poly(aniline‐coo‐toluidine) coatings provided more effective corrosion protection to low‐carbon steel than the respective homopolymers. The corrosion rate depended on the feed ratio of o‐toluidine used for the synthesis of the copolymer coatings. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:1868–1878, 2007  相似文献   

17.
Thin films of poly(o‐anisidine) (POA), poly(o‐toluidine) (POT), and their copolymer poly(o‐anisidine‐coo‐toluidine) (POA‐co‐POT) were electropolymerized in solutions containing 0.1M monomer(s) and 1M H2SO4 as an electrolyte through the application of a sequential linear potential scanning rate of 50 mV/s between ?0.2 and 1.0 V versus an Ag/AgCl electrode on a platinum electrode. A simple technique was used to construct glucose sensors through the entrapment of glucose oxidase (GOD) in thin films of POA, POT, and their copolymer POA‐co‐POT, which were electrochemically deposited on a platinum plate in phosphate and acetate buffers. The maximum current response was observed for POA, POT, and POA‐co‐POT GOD electrodes at pH 5.5 and at a potential of 0.60 V (vs Ag/AgCl). The phosphate buffer yielded a fast response in comparison with the acetate buffer in amperometric measurements. The POT GOD electrode showed a fast response and was followed by POA‐co‐POT and POA GOD electrodes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1877–1884, 2004  相似文献   

18.
In this study, poly(o‐anisidine) [POA], poly(o‐anisidine‐co‐aniline) [POA‐co‐A], and polyaniline [PANi] were chemically synthesized using a single polymerization process with aniline and o‐anisidine as the respective monomers. During the polymerization process, p‐toluene sulfonic acid monohydrate was used as a dopant while ammonium persulfate was used as an oxidant. N‐methyl‐pyrolidone (NMP) was used as a solvent. We observed that the ATR spectra of POA‐co‐A showed features similar to those of PANi and POA as well as additional ones. POA‐co‐A also achieved broader and more extended UV–vis absorption than POA but less than PANi. The chemical and electronic structure of the product of polymerization was studied using Attenuated Total Reflectance spectroscopy (ATR) and UV–visible spectroscopy (UV–vis). The transition temperature of the homopolymers and copolymers was studied using differential scanning calorimetry and the viscosity average molecular weight was studied by using dilute solution viscometry. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Conducting composites of aniline/o‐anisidine copolymer doped by dodecylbenzenesulfonic acid (P(An‐co‐oAs)‐DBSA), linear low‐density polyethylene (LLDPE), and ethylene–acrylic acid copolymer (EAA) as compatibilizer were prepared by melt processing. The effects of composition on electrical conductivity, resistivity‐temperature characteristic, and mechanical properties were also investigated. The electrical conductivity of ternary composites markedly increased due to compatibilizition and protonation effect of the EAA. The SEM micrograph shows that the compatibility between the P(An‐co‐oAs)‐DBSA and the LLDPE matrix is enhanced after the introduction of EAA. The positive temperature coefficient of resistivity characteristic is observed. Tensile strength of P(An‐co‐oAs)‐DBSA/LLDPE/EAA composites is improved, compared with P(An‐co‐oAs)‐DBSA/LLDPE composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1511–1516, 2005  相似文献   

20.
Conducting poly(aniline‐co‐o‐anisidine) (PAS) films with different ratios of aniline units in the polymer chain were prepared by oxidative polymerization of different molar ratios of aniline and o‐anisidine in 1 M HCl using cyclic voltammetry. Due to the much higher reactivity of o‐anisidine, the structure and properties of PASs were found to be dominated by the o‐anisidine units. The polymerization of poly‐o‐anisidine and PASs followed zero‐order kinetics with respect to formation of the polymer (film thickness) and the autocatalytic polymerization of aniline was completely inhibited. In contrast to polyaniline, a decrease in the polymerization temperature was found to increase the amount of copolymer formed and its redox charge. The presence of aniline units in PASs led to a pronounced increase in the molecular weight and conductivity, and a decrease in the solubility in organic solvents. Repetitive charging/discharging cycles showed that PASs resist degradation more than polyaniline. Copyright © 2003 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号