首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
In this paper, we face the problem of model reduction in piecewise‐linear (PWL) approximations of non‐linear functions. The reduction procedure presented here is based on the PWL approximation method proposed in a companion paper and resorts to a strategy that exploits the orthonormality of basis functions in terms of a proper inner product. Such a procedure can be favourably applied to the synthesis of the resistive parts of cellular non‐linear networks (CNNs) to reduce the complexity of the resulting circuits. As an example, the method is applied to a case study concerning a CNN for image processing. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The good convergence properties of piecewise‐linear (PWL) DC analysis have been thoroughly discussed in many papers. This paper, in turn, concentrates on the speed of PWL DC analysis, where the boundary crossing of linear regions plays a crucial role. Fast methods are presented for performing the following boundary‐crossing computations: LU‐decomposition update, matrix‐equation solution, boundary‐crossing direction, and damping‐factor determination. Special attention is given to those PWL DC analysis methods that perform PWL modelling of the non‐linear components on the fly; an adaptive method is proposed for controlling the accuracy of PWL modelling and speeding up simulation. The computational efficiency of the accelerated PWL DC analysis is discussed and compared with that of conventional, Newton–Raphson iteration‐based, DC analysis. Finally, the performance evaluation is completed with realistic simulation examples: it is demonstrated that the speed of the accelerated PWL DC analysis is comparable with that of the conventional DC analysis. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
An efficient algorithm is proposed for finding all DC solutions of transistor circuits where characteristics of transistors are represented by piecewise‐linear (PWL) convex monotone functions. This algorithm is based on a simple test (termed the linear programming, LP, test) for non‐existence of a solution to a system of PWL equations in a given region. In the conventional LP test, the system of PWL equations is transformed into an LP problem by surrounding component PWL functions by rectangles. Then the dual simplex method is applied, by which the number of pivotings per region becomes very small. In this letter, we propose a new LP test using the dual simplex method and triangles. The proposed test is not only efficient but also more powerful than the conventional test using the simplex method or rectangles. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
An efficient algorithm is proposed for finding all solutions of piecewise‐linear (PWL) resistive circuits using linear programming (LP). This algorithm is based on a simple test (termed the LP test) for non‐existence of a solution to a system of PWL equations in a given region. In the conventional LP test, the system of PWL equations is transformed into an LP problem, to which the simplex method is applied. However, this algorithm requires a very large number of pivotings because the simplex method is applied on many regions. In this paper, we introduce the dual simplex method to the LP test, which makes the average number of pivotings per region much smaller (less than one, for example) and makes the algorithm very efficient. By numerical examples, it is shown that the proposed algorithm could find all solutions of large‐scale problems, including those where the number of variables is 300 and the number of linear regions is 10300, in practical computation time. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper we propose a variational method to find out piecewise‐linear (PWL) approximations of non‐linear dynamical systems in view of their circuit implementations. The method is based on some significant trajectories of the dynamical system and provides reasonably accurate PWL approximations with a relatively low number of parameters. The effectiveness of the method is validated by applying it to the approximation of limit cycles (both stable and unstable) in the Bautin system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
This paper deals with the circuit implementation of non‐linear algebraic bivariate functions. The synthesis procedure is based on a piecewise‐linear approximation technique and on a corresponding circuit architecture, whose basic element is a circuit block with the input/output function y(x) = max(0; x). Some known CMOS circuit structures that can be used to obtain such a block are considered, and their main advantages and drawbacks are pointed out. The static and dynamic features of both the single circuit block and the overall architecture for two‐dimensional PWL functions are illustrated by way of examples. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Non‐linear multiport resistors are the main ingredients in the synthesis of non‐linear circuits. Recently, a particular PWL representation has been proposed as a generic design platform (IEEE Trans. Circuits Syst.‐I 2002; 49 :1138–1149). In this paper, we present a mixed‐signal circuit architecture, based on standard modules, that allows the electronic integration of non‐linear multiport resistors using the mentioned PWL structure. The proposed architecture is fully programmable so that the unit can implement any user‐defined non‐linearity. Moreover, it is modular: an increment in the number of input variables can be accommodated through the addition of an equal number of input modules. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A new compact MAX representation for 2‐D continuous piecewise‐linear (PWL) functions is developed in this paper. The representation is promising since it can be easily generalized into higher dimensions. We also establish the explicit functional form of basis function and demonstrate that the proposed basis function is the elementary ‘building block’ from which a fully general 2‐D PWL function can be constructed. In addition, we reveal the relationship of basis function with minimal degenerate intersection and Hinging Hyperplane, which shows that the MAX model can unify Chua's canonical expression, Li's representation, lattice PWL function and Bremann's Hinging Finding Algorithm into one common theoretical framework. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
In this letter, an efficient algorithm is proposed for finding all solutions of non‐linear (not piecewise‐linear) resistive circuits. This algorithm is based on interval analysis, the dual simplex method, and the contraction methods. By numerical examples, it is shown that the proposed algorithm could find all solutions of systems of 500–700 non‐linear circuit equations in acceptable computation time. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a conceptually simple robustification approach for the adaptive control of a class of non‐linear systems with static and dynamic uncertainties. This approach generates a new class of robust adaptive non‐linear controllers and is based upon a combined application of the well‐known adaptive backstepping and recent non‐linear small‐gain techniques. The presented method is illustrated via a third‐ order chemical reactor with only temperature information, and under relaxed conditions. An adaptive output‐feedback stabilizer is obtained without resorting to any state observer. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
The convergence problems of conventional DC analysis can be partly avoided by using piecewise‐linear analysis. This paper proposes a piecewise‐linear DC analysis method that can efficiently handle arbitrary couplings between non‐linear circuit elements. Piecewise‐linear modelling of the non‐linear circuit elements is automatically performed during simulation, using simplicial subdivisions. The number of linear regions, and thereby iterations, is considerably reduced by combining the common parts of separate simplicial subdivisions. Due to these reasons and since the method is formulated with the commonly used modified nodal approach, it has been possible to implement the method in the general‐purpose circuit simulator APLAC. The correct operation of the method is demonstrated with three examples. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
The identification of a non‐linear continuous output‐only system from a time series is considered for the case that the functional form of the model is not known beforehand. To estimate both functions and parameters, a combination of non‐parametric modelling based on non‐linear regression and parametric modelling based on a multiple shooting algorithm is proposed. This strategy to determine non‐linear differential equations is exemplified on experimental data from a chaotic circuit where an accurate reconstruction of the observed attractor is obtained. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a simple, quasi‐static, non‐linear (saturated mode) NMOS drain‐current model for Volterra‐series analysis. The model is based on a linear transconductance, a linear drain‐source conductance and a purely non‐linear drain‐source current generator. The drain‐current dependency on both drain‐source and gate‐source voltages is included. Model parameters are then extracted from direct numerical differentiation of DC I/V measurements performed on a 160 × 0.25 µm NMOS device. This paper presents the Volterra analysis of this model, including algebraic expressions for intercept points and output spectrum. The model has been verified by comparing measured two‐tone iIP2 and iIP3 with the corresponding model predictions over a wide range of bias points. The correspondence between the modelled and measured response is good. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper the output tracking control problem for a class of non‐linear time delay systems with some unknown constant parameters is addressed. Such a problem is solved in the case that the non‐linear time‐delay system has full delay relative degree and stable internal dynamics. It is supposed moreover that the output and its time derivatives until n?1, where n is the length of the state vector (euclidean part), do not depend explicitly on the unknown parameters. This work is the first step towards the application of the methodologies of adaptive control for non‐linear delayless systems, based on tools of differential geometry, to non‐linear time‐delay systems too. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
This paper develops an adaptive estimation method to estimate unknown disturbances in a class of non‐minimum phase non‐linear MIMO systems. The unknown disturbances are generated by an unknown linear exosystem. The frequencies, phases and amplitudes of the disturbances are unknown, the only available information of the disturbances is the number of distinctive frequencies. The system considered in this paper is a class of MIMO non‐linear systems in the output feedback form which can be non‐minimum phase. The proposed estimation algorithm provides exponentially convergent estimates of system states, unknown disturbances in the system and frequencies of the disturbances characterized by the eigenvalues of the exosystem. Moreover, based on the stabilization controller for the disturbance free system, the estimates of the disturbances are used to solve the disturbance rejection problem. The unknown disturbances are compensated completely with the stability of the whole closed‐loop system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Digital architectures for the circuit realization of multivariate piecewise‐linear (PWL) functions are reviewed and compared. The output of the circuits is a digital word representing the value of the PWL function at the n‐dimensional input. In particular, we propose two architectures with different levels of parallelism/complexity. PWL functions with n = 3 inputs are implemented on an FPGA and experimental results are shown. The accuracy in the representation of PWL functions is tested through three benchmark examples, two concerning three‐variate static functions and one concerning a dynamical control system defined by a bi‐variate PWL function. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Large change sensitivity has been proved efficient at, but restricted to, generating a linear circuit fault dictionary. This paper discusses the extension of large change sensitivity to non‐linear analog circuit fault diagnosis. The fault dictionary is divided into d.c. and a.c. sections. In the d.c. domain, non‐linear components are approximated with piecewise linear models. By relating the operating region of each piecewise linear model to the magnitude of a single fault in a procedure termed preconditioning, it is shown that large change sensitivity can efficiently compute the response of a faulty non‐linear circuit. Results presented of an analysis of computational complexity show a significant reduction in the cost of simulating single linear resistor faults in a non‐linear circuit using this method. In addition, after establishing that the resistive portion of the circuit is fault free, a fault dictionary is constructed for dynamic components using large change sensitivity in the small signal a.c. domain. Included with a discussion on the issues of large change sensitivity based simulation‐before‐test, a small non‐linear circuit is used to demonstrate the effectiveness of the proposed fault diagnosis algorithm. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a methodology for statistical simulation of non‐linear integrated circuits affected by device mismatch. This simulation technique is aimed at helping designers maximize yield, since it can be orders of magnitude faster than other readily available methods, e.g. Monte Carlo. Statistical analysis is performed by modeling the electrical effects of tolerances by means of stochastic current or voltage sources, which depend on both device geometry and position across the die. They alter the behavior of both linear and non‐linear components according to stochastic device models, which reflect the statistical properties of circuit devices up to the second order (i.e. covariance functions). DC, AC, and transient analyses are performed by means of the stochastic modified nodal analysis, using a piecewise linear stochastic technique with respect to the stochastic sources, around a few automatically selected points. Several experimental results on significant circuits, encompassing both the analog and the digital domains, prove the effectiveness of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
We provide an asymptotic method for systematically analysing the transient and the steady‐state oscillations in third‐order oscillators with shifting bias. The method allows us to construct the general solution of the weakly non‐linear differential equation describing these oscillators through an iteration procedure of successive approximations typical of perturbation methods. The approximation to first order is obtained solving a system of two first‐order non‐linear differential equations in the leading terms of solution (dc component and fundamental harmonic), whereby the dominant dynamics, the stationary states and their stability can be easily analysed. Unlike existing approaches, our method also enables us to determine the higher harmonics as well as the frequency shift from the system's natural frequency in the exact solution through analytical formulae. In addition, formulae for higher‐order approximations of the above quantities are determined. The proposed method is applied to a practical circuit to show its usefulness in both analysis and design problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
The solution of non‐linear carrier diffusion equation associated with the axial direction of broad‐area laser has been achieved by a hybrid asymptotic‐numerical method that combines WKB approximation and the variation of constants method. The non‐linearity has been taken into account by using an iterative scheme: carrier lifetime has been linearized and calculated as a function of carrier density known from the previous iteration. Non‐uniform photon density has been taken into account. As the new method is based on analytical solutions, it is very fast and not vulnerable to large gradients of carrier concentration usually occurring in the vicinity of laser facets. Therefore, it can be useful in complicated self‐consistent thermal models of broad‐area lasers. The obtained results are compared with two simplified cases: solution of linear diffusion equation with constant coefficients and calculations neglecting the diffusion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号