首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trans‐1,4,5,8‐Tetranitro‐1,4,5,8‐Tetraazadecalin (TNAD), a cyclic nitroamine, has been studied with regard to the kinetics and mechanism of thermal decomposition, using thermogravimetry (TG), IR spectroscopy, and pressure differential scanning calorimetry (PDSC). The IR spectra of TNAD have also been recorded, and the kinetics of thermolysis has been followed by non‐isothermal TG. The activation energy of the solid‐state process was determined by using the Flynn‐Wall‐Ozawa method. Compared with the activation energy obtained from the Ozawa method, the reaction mechanism of the exothermic process of TNAD was classified by the Coats‐Redfern method as a nucleation and nuclear growth (Avrami equation 1) chemical reaction (α=0.30–0.60) and a 2D diffusion (Valensi equation) chemical reaction (α=0.60–0.90). Ea and ln A were established to be 330.14 kJ mol−1 and 29.93 (α=0.30–0.60) or 250.30 kJ mol−1 and 21.62 (α=0.60–0.90).  相似文献   

2.
A novel methacrylate monomer containing benzofuran side group, 2‐(5‐bromo benzofuran‐2‐yl)‐2‐oxoethyl methacrylate (BOEMA), was synthesized from esterification reaction of 2‐bromo‐1‐(5‐bromo benzofuran‐2‐yl) ethanone with sodium methacrylate at 85°C in the presence of 1,4‐dioxane solvent. After characterization with Fourier transform infrared spectrophotometer, nuclear magnetic resonance (1H‐NMR and 13C‐NMR), its homopolymerization was carried out by free radical polymerization at 60°C in the presence of benzoyl peroxide initiator and 1,4‐dioxane solvent. The glass transition temperature (Tg) of the synthesized novel polymer, poly(2‐(5‐bromo benzofuran‐2‐yl)‐2‐oxoethyl methacrylate) [poly(BOEMA)], was determined to be 137°C with differential scanning calorimetry technique. Thermal degradation kinetics of poly(BOEMA) was investigated by thermogravimetric analysis method at different heating rates with 5°C/min intervals between measurements. From dynamic measurements, the analysis of each process mechanism of Coats–Redfern and Van Krevelen methods showed that the most probable model for the decomposition process of poly(BOEMA) homopolymer agrees with the random nucleation, F1 mechanism. The apparent decomposition activation energies of poly(BOEMA) by Kissinger's and Flynn–Wall–Ozawa methods in the studied conversion range were 188.47 and 180.13 kJ/mol, respectively. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

3.
A copolymer of 4‐methoxybenzyl methacrylate and isobornyl methacrylate was synthesized by atom transfer radical polymerization. The structure of poly(4‐methoxybenzyl methacrylate‐co‐isobornyl methacrylate) was confirmed by means of Fourier transform infrared, 1H‐NMR, and 13C‐NMR techniques. The molecular weight distribution values of the copolymer were determined with gel permeation chromatography. The number‐average molecular weight and polydispersity index values of poly(4‐methoxybenzyl methacrylate‐co‐isobornyl methacrylate) were found to be 12,500 and 1.5, respectively. The kinetics of the thermal degradation of the copolymer was investigated with thermogravimetric analysis at different heating rates. The activation energy values obtained with the Kissinger, Flynn–Wall–Ozawa, and Tang methods were determined to be 166.38, 167.54, and 167.47 kJ/mol, respectively. Different integral and differential methods were used, and the results were compared with these values. Doyle approximation was also used for comparing the experimental results to master plots. An analysis of the experimental results suggested that the reaction mechanism was an R1 deceleration type in the conversion range studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
RAFT polymerization of N‐vinyl pyrrolidone (NVP) has been investigated in the presence of chain transfer agent (CTA), i.e., prop‐2‐ynyl morpholine‐4‐carbodithioate (PMDC). The influence of reaction parameters such as monomer concentration [NVP], molar ratio of [CTA]/[AIBN, i.e., 2,2′‐azobis (2‐methylpropionitrile)] and [NVP]/[CTA], and temperature have been studied with regard to time and conversion limit. This study evidences the parameters leading to an excellent control of molecular weight and molar mass dispersity. NVP has been polymerized by maintaining molar ratio [NVP]: [PMDC]: [AIBN] = 100 : 1 : 0.2. Kinetics of the reaction was strongly influenced by both temperature and [CTA]/[AIBN] ratio and to a lesser extent by monomer concentration. The activation energy (Ea = 31.02 kJ mol?1) and enthalpy of activation (ΔH?= 28.29 kJ mol?1) was in a good agreement to each other. The negative entropy of activation (ΔS? = ?210.16 J mol‐1K‐1) shows that the movement of reactants are highly restricted at transition state during polymerization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The free‐radical polymerization of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) in aqueous media and in the presence of potassium persulfate (KPS) as a thermal initiator was studied. The 1H‐NMR method was applied to record the reaction data in online gain. The effects of the monomer and initiator concentrations and also the reaction temperature were studied. The order of reaction with respect to the monomer was much greater than unity (1.94). None of the three theories describing an order of reaction higher than unity could predict the AMPS polymerization mechanism in this study. So, a new mechanism is presented. It is suggested that initiation took place through the formation of a complex between the initiator and monomer, and termination occurred not only by a bimolecular reaction but also by a monomolecular reaction. The order with respect to KPS was 0.49; this was consistent with classical kinetic theory. The determined activation energy at the overall rate of reaction was 92.7 kJ mol?1 K?1. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Poly(decamethylene 2‐oxoglutarate) [poly (DMOG)] was synthesized by a melt polycondensation reaction. The structure of poly(DMOG) was confirmed by means of Fourier transform infrared, 1H‐NMR, and 13C NMR spectroscopies. The molecular weight distribution values of poly(DMOG) were determined with size exclusion chromatography. The number‐average molecular weight, weight‐average molecular weight, and polydispersity index values of poly(DMOG) were found to be 13,200, 19,000, and 1.439, respectively. Also, characterization was made by thermogravimetry (TG)–dynamic thermal analysis. The kinetics of the thermal degradation of poly (DMOG) was investigated by thermogravimetric analysis at different heating rates. TG curves showed that the thermal decomposition of poly(DMOG) occurred in one stage. The apparent activation energies of thermal decomposition for poly(DMOG), as determined by the Tang method, the Flynn–Wall–Ozawa method, the Kissinger–Akahira–Sunose method, and the Coats–Redfern method were 122.5, 126.8, 121.4, and 122.9 kJ/mol, respectively. The mechanism function and pre‐exponential factor were also determined by the master plots method. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Two series of terpoly(methoxy‐cyanurate‐thiocyanurate)s based on thiodiphenol and dithiodiphenyl sulfide and on dihydroxydiphenyl ether and dithiodiphenyl ether, were prepared in good yield and purity and fully characterized. Most of the resulting polymers, formed at room temperature using phase transfer catalysis, can be cast into films with good resilience and thermal stability (some examples suffer practically no mass loss when held isothermally at 190 °C and only display appreciable losses when held continuously at 225 °C). Char yields of 53%?61% are achieved in nitrogen depending on backbone structure. Some problems were encountered with solubility, particularly with copolymers, which limited molecular weight analysis, but values of Mn = 8000–13 000 g mol?1 were obtained for the polymers based on thiodiphenol and dithiodiphenyl sulfide, and Mn = 5000–13 000 g mol?1 for the polymers based on dihydroxydiphenyl ether and dithiodiphenyl ether. DSC reveals polymerization exotherms with maxima at 184–207 °C (ΔHp = 43–59 kJ mol?1), which are believed to be due to isomerization of the cyanurate to the isocyanurate (activation energies span 159–195 kJ mol?1). Molecular simulation shows that diphenylether and diphenylsulfide display very similar conformational energy surfaces and would therefore be expected to adopt similar conformations, but the diphenylsulfide offers less resistance to deformations that increase the proximity of the two phenyl rings and results in more resilient films. © 2013 Society of Chemical Industry  相似文献   

8.
The kinetics of the thermal decomposition of basic cobalt carbonate was investigated under non‐isothermal heating in air media using thermogravimetric analysis (TGA). TG‐DTG curves showed that the decomposition proceeded through two well‐fined steps in air. Weight loss of the thermal decomposition of basic cobalt carbonate was in good agreement with the theoretical weight loss. The isoconversional method has been applied to the data in order to evaluate a dependence of the effective activation energy on the extent of conversion, and the possible conversion functions have been estimated through the multiple linear regression method. The average apparent activation energies of the second steps (0.4 ≤ α ≤0.9) were 96.607–144.537 kJ/mol.  相似文献   

9.
BACKGROUND: Supercritical water oxidation (SCWO) of dyehouse waste‐water containing several organic pollutants has been studied. The removal of these organic components with unknown proportions is considered in terms of total organic carbon concentration (TOC), with an initial value of 856.9 mg L?1. Oxidation reactions were performed using diluted hydrogen peroxide. The reaction conditions ranged between temperatures of 400–600 °C and residence times of 8–16 s under 25 MPa of pressure. RESULTS: TOC removal efficiencies using SCWO and hydrothermal decomposition were between 92.0 and 100% and 6.6 and 93.8%, respectively. An overall reaction rate, which consists of hydrothermal decomposition and the oxidation reaction, was determined for the hydrothermal decomposition of the waste‐water with an activation energy of 104.12 ( ± 2.6) kJ mol?1 and a pre‐exponential factor of 1.59( ± 0.5) × 105 s?1. The oxidation reaction rate orders for the TOC and the oxidant were 1.169 ( ± 0.3) and 0.075 ( ± 0.04) with activation energies of 18.194 ( ± 1.09) kJ mol?1, and pre‐exponential factor of 5.181 ( ± 1.3) L0.244 mmol?0.244 s?1 at the 95% confidence level. CONCLUSION: Results demonstrate that the SCWO process decreased TOC content by up to 100% in residence times between 8 and 16 s under various reaction conditions. The treatment efficiency increased remarkably with increasing temperature and the presence of excess oxygen in the reaction medium. Color of the waste‐water was removed completely at temperatures of 450 °C and above. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
Simultaneous interpenetrating polymer networks (IPNs) based on poly(butyl methacrylate) and poly(α‐terpineol‐co‐styrene) were synthesized with azobisisobutyronitrile (AIBN) as the initiator and divinyl benzene as the crosslinking agent in xylene under an inert nitrogen atmosphere. Fourier transform infrared spectra provided structural evidence for the IPNs, indicating characteristic frequencies of ester groups of butyl methacrylate at 1723 cm?1 and alcoholic groups of α‐terpineol at 3436 cm?1. Scanning electron microscopy revealed threadlike network structures. Properties such as percentage swelling and average molecular weight between crosslinks were direct functions of the copolymer and initiator (AIBN) concentrations and inverse functions of the monomer (butyl methacrylate) and crosslinking agent (divinyl benzene) concentrations. Differential scanning calorimetry showed an IPN glass‐transition temperature at 80.2°C. The thermal decompositions of the IPNs were established with the help of thermogravimetric analysis. The value of the activation energy, calculated from thermogravimetric analysis with the Coats and Redfern equation, was 23 kJ/mol. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 343–352, 2006  相似文献   

11.
The oxidative polycondensation reaction conditions of 4‐[(pyridine‐3‐yl‐methylene) amino]phenol (4‐PMAP) were studied using H2O2, atmospheric O2, and NaOCl oxidants in an aqueous alkaline medium between 30°C and 90°C. Synthesized oligo‐4‐[(pyridine‐3‐yl‐methylene) amino] phenol (O‐4‐PMAP) was characterized by 1H‐, 13C NMR, FTIR, UV–vis, size exclusion chromatography (SEC), and elemental analysis techniques. The yield of O‐4‐PMAP was found to be 32% (for H2O2 oxidant), 68% (for atmospheric O2 oxidant), and 82% (for NaOCl oxidant). According to the SEC analysis, the number–average molecular weight, weight–average molecular weight, and polydispersity index values of O‐4‐PMAP was found to be 5767, 6646 g mol?1, and 1.152, respectively, using H2O2, and 4540, 5139 g mol?1, and 1.132, respectively, using atmospheric O2, and 9037, 9235 g mol?1, and 1.022, using NaOCl, respectively. According to TG and DSC analyses, O‐4‐PMAP was more stable than 4‐PMAP against thermal decomposition. The weight loss of O‐4‐PMAP was found to be 94.80% at 1000°C. Also, antimicrobial activities of the oligomer were tested against B. cereus, L. monocytogenes, B. megaterium, B. subtilis, E. coli, Str. thermophilus, M. smegmatis, B. brevis, E. aeroginesa, P. vulgaris, M. luteus, S. aureus, and B. jeoreseens. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3327–3333, 2006  相似文献   

12.
In this study, the kinetic parameters and reaction mechanism of decomposition process of oligo(4‐hydroxyquinoline) synthesized by oxidative polymerization were investigated by thermogravimetric analysis (TGA) at different heating rates. TGA‐derivative thermogravimetric analysis curves showed that the thermal decomposition occurred in two stages. The methods based on multiple heating rates such as Kissinger, Kim–Park, Tang, Flynn–Wall–Ozawa method (FWO), Friedman, and Kissinger–Akahira–Sunose (KAS) were used to calculate the kinetic parameters related to each decomposition stage of oligo(4‐hydroxyquinoline). The activation energies obtained by Kissinger, Kim–Park, Tang, KAS, FWO, and Friedman methods were found to be 153.80, 153.89, 153.06, 152.62, 151.25, and 157.14 kJ mol?1 for the dehydration stage, 124.7, 124.71, 126.14, 123.75, 126.19, and 124.05 kJ mol?1 for the thermal decomposition stage, respectively, in the conversion range studied. The decomposition mechanism and pre‐exponential factor of each decomposition stage were also determined using Coats–Redfern, van Krevelen, Horowitz–Metzger methods, and master plots. The analysis of the master plots and methods based on single heating rate showed that the mechanisms of dehydration and decomposition stage of oligo(4‐hydroxyquinoline) were best described by kinetic equations of An mechanism (nucleation and growth, n = 1) and Dn mechanism (dimensional diffusion, n = 6), respectively. POLYM. ENG. SCI., 54:992–1002, 2014. © 2013 Society of Plastics Engineers  相似文献   

13.
The oxidative polycondensation reaction conditions of 4‐[(2‐mercaptophenyl) imino methyl] phenol (2‐MPIMP) were studied in an aqueous acidic medium between 40 and 90°C by using oxidants such as air, H2O2, and NaOCl. The structures of the synthesized monomer and polymer were confirmed by FTIR, 1H NMR, 13C NMR, and elemental analysis. The characterization was made by TGA‐DTA, size exclusion chromatography (SEC) and solubility tests. At the optimum reaction conditions, the yield of poly‐4‐[(2‐mercaptophenyl) imino methyl]phenol (P‐2‐MPIMP) was found to be 92% for NaOCl oxidant, 84% for H2O2 oxidant 54% for air oxidant. According to the SEC analysis, the number‐average molecular weight (Mn), weight‐average molecular weight (Mw), and polydispersity index values of P‐2‐MPIMP were found to be 1700 g mol?1, 1900 g mol?1, and 1.118, using H2O2; 3100 g mol?1, 3400 g mol?1, and 1.097, using air; and 6750 g mol?1, 6900 g mol?1, and 1.022, using NaOCl, respectively. According to TG analysis, the weight losses of 2‐MPIMP and P‐2‐MPIMP were found to be 95.93% and 76.41% at 1000°C, respectively. P‐2‐MPIMP showed higher stability against thermal decomposition. Also, electrical conductivity of the P‐2‐MPIMP was measured, showing that the polymer is a typical semiconductor. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, and the electrochemical energy gaps (Eg) of 2‐MPIMP and P‐2‐MPIMP were found to be ?6.13, ?6.09; ?2.65, ?2.67; and 3.48, 3.42 eV, respectively. Kinetic and thermodynamic parameters of these compounds investigated by MacCallum‐Tanner and van Krevelen methods. The values of the apparent activation energies of thermal decomposition (Ea), the reaction order (n), pre‐exponential factor (A), the entropy change (ΔS*), enthalpy change (ΔH*), and free energy change (ΔG*) were calculated from the TGA curves of compounds. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
In this study, the kinetics of the thermal decomposition of aminoguanidinium 5,5′‐azobis‐1H‐tetrazolate (AGAT), which is one of the promising fuel candidates of the new gas generating agents for airbags, was investigated. The kinetic model that fits the main decomposition of AGAT was examined, and the activation energy was obtained. The main decomposition of AGAT was a single elementary process according to the result of mass spectrometry. The recommended kinetic model for the main decomposition of AGAT is Avrami–Erofeev equation (n=4). The activation energies for the main decomposition obtained under helium by non‐isothermal analysis and isothermal analysis were 207 and 209 kJ mol−1, respectively.  相似文献   

15.
The synergistic effect of 1‐phenyl‐3‐methyl‐4‐benzoyl‐pyrazalone‐5 (HPMBP, HA) and di‐(2‐ethylhexyl)‐2‐ethylhexylphosphonate (DEHEHP, B) in the extraction of rare earths (RE) from chloride solutions has been investigated. Under the experimental conditions used, there was no detectable extraction when DEHEHP was used as a single extractant while the amount of RE(III) extracted by HPMBP alone was also low. But mixtures of the two extractants at a certain ratio had very high extractability for all the RE(III). For example, the synergistic enhancement coefficient was calculated to be 9.35 for Y3+, and taking Yb3+ and Y3+ as examples, RE3+ is extracted as RE(OH)A2.B. The stoichiometry, extraction constants and thermodynamic functions such as Gibbs free energy change ΔG (?17.06 kJ mol?1), enthalpy change ΔH (?35.08 kJ mol?1) and entropy change ΔS (?60.47 J K?1 mol?1) for Y3+ at 298 K were determined. The separation factors (SF) for adjacent pairs of rare earths were calculated. Studies show that the binary extraction system not only enhances the extraction efficiency of RE(III) but also improves the selectivity, especially between La(III) and the other rare earth elements. Copyright © 2006 Society of Chemical Industry  相似文献   

16.
An advanced heat‐resistant fiber (trade name Ekonol) spun from a nematic liquid crystalline melt of thermotropic wholly aromatic poly(p‐oxybenzoate‐p,p′‐biphenylene terephthalate) has been subjected to a dynamic thermogravimetry in nitrogen and air. The thermostability of the Ekonol fiber has been studied in detail. The thermal degradation kinetics have been analyzed using six calculating methods including five single heating rate methods and one multiple heating rate method. The multiple heating‐rate method gives activation energy (E), order (n), frequency factor (Z) for the thermal degradation of 314 kJ mol−1, 4.1, 7.02 × 1020 min−1 in nitrogen, and 290 kJ mol−1, 3.0, 1.29 × 1019 min−1 in air, respectively. According to the five single heating rate methods, the average E, n, and Z values for the degradation were 178 kJ mol−1, 2.1, and 1.25 × 1010 min−1 in nitrogen and 138 kJ mol−1, 1.0, and 6.04 × 107 min−1 in air, respectively. The three kinetic parameters are higher in nitrogen than in air from any of the calculating techniques used. The thermostability of the Ekonol fiber is substantially higher in nitrogen than in air, and the decomposition rate in air is higher because oxidation process is occurring and accelerates thermal degradation. The isothermal weight‐loss results predicted based on the nonisothermal kinetic data are in good agreement with those observed experimentally in the literature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1923–1931, 1999  相似文献   

17.
Poly[(diethylaminoethyl methacrylate)‐graft‐(ethylene glycol)] hydrogels were prepared with a molar ratio of 10:1 of diethylaminoethyl methacrylate to poly(ethylene glycol) of number‐average molecular weights (Mn) 200, 400 and 1000 g mol?1 using tetra(ethylene glycol) dimethacrylate to give a crosslinking ratio between 0.5 and 4.0 %. Glucose oxidase and catalase were immobilized in the matrix during polymerization. The maximum enzyme loading used was 6.6 × 10?4 g of glucose oxidase per g of polymer. The equilibrium and dynamic swelling properties of these hydrogels were investigated. The pH‐dependent equilibrium swelling characteristics showed a sharp transition between the swollen and the collapsed state at pH 7.0. The dynamic response of the hydrogel discs to pH was analyzed in pulsatile pH conditions. The effects of particle size, crosslinking and molecular weight of poly(ethylene glycol) (PEG) on the dynamic swelling response were investigated. The pulsatile nature of the response was analyzed using Boltzmann superposition. Swelling–pH master curves were obtained. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
The reverse atom‐transfer radical polymerization (RATRP) technique using CuCl2/2,2′‐bipyridine (bipy) complex as a catalyst was applied to the living‐radical polymerization of acrylonitrile (AN). 1,1,2,2‐Tetraphenyl‐1,2‐ethanediol (TPED) was first used as the initiator in this copper‐based RATRP initiation system. A CuCl2 to bipy ratio of 0.5 not only gives the best control of molecular weight and its distribution, but also provides rather rapid reaction rate. The rate of polymerization increases with increasing the polymerization temperature, and the apparent activation energy was calculated to be 53.2 kJ mol?1. Because the polymers obtained were end‐functionalized by chlorine atoms, they were used as macroinitiators to proceed the chain extension polymerization in the presence of CuCl/bipy catalyst system via a conventional ATRP process. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3529–3533, 2007  相似文献   

19.
The influence of the apatite on the efficiency of neutralization and on heavy metal removal of acid mine waste water has been studied. The analysis of the treated waste water samples with apatite has shown an advanced purification, the concentration of the heavy metals after the treatment of the waste water with apatite being 25 to 1000 times less than the Maximum Concentration Limits admitted by European Norms (NTPA 001/2005). In order to establish the macro‐kinetic mechanism in the neutralization process, the activation energy, Ea, and the kinetic parameters, rate coefficient of reaction, kr, and kt were determined from the experimental results obtained in “ceramic ball‐mill” reactor. The obtained values of the activation energy Ea >> 42 kJ mol?1 (e.g. Ea = 115.50 ± 7.50 kJ mol?1 for a conversion of sulphuric acid ηH2SO4 = 0.05, Ea = 60.90 ± 9.50 kJ mol?1 for η H2SO4 = 0.10 and Ea = 55.75 ± 10.45 kJ mol‐1 for η H2SO4 = 0.15) suggest that up to a conversion of H2SO4 equal 0.15 the global process is controlled by the transformation process, adsorption followed by reaction, which means surface‐controlled reactions. At a conversion of sulphuric acid η H2SO4 > 0.15, the obtained values of activation energy Ea < 42 kJ mol‐1 (e.g. Ea = 37.55 ± 4.05 kJ mol‐1 for η H2SO4 = 0.2, Ea = 37.54 ± 2.54 kJ mol‐1 for η H2SO4 = 0.3 and Ea = 37.44 ± 2.90 kJ mol‐1 for η H2SO4 = 0.4) indicate diffusion‐controlled processes. This means a combined process model, which involves the transfer in the liquid phase followed by the chemical reaction at the surface of the solid. Kinetic parameters as rate coefficient of reaction, kr with values ranging from (5.02 ± 1.62) 10‐4 to (8.00 ± 1.55) 10‐4 (s‐1) and transfer coefficient, kt, ranging from (8.40 ± 0.50) 10‐5 to (10.42 ± 0.65) 10‐5 (m s‐1) were determined.  相似文献   

20.
Hydrogenation of 4‐chloro‐2‐nitrophenol (CNP) was carried out at moderate hydrogen pressures, 7–28 atm, and temperatures in the range 298–313 K using Pt/carbon and Pd/γ‐Al2O3 as catalysts in a stirred pressure reactor. Hydrogenation of CNP under the above conditions gave 4‐chloro‐2‐aminophenol (CAP). Dechlorination to form 2‐aminophenol and 2‐nitrophenol is observed when hydrogenation of CNP is carried out above 338 K, particularly with Pd/γ‐Al2O3 catalyst. Among the catalysts tested, 1%Pt/C was found to be an effective catalyst for the hydrogenation of CNP to form CAP, exclusively. To confirm the absence of gas–liquid mass transfer effects on the reaction, the effect of stirring speed (200–1000 rpm) and catalyst loading (0.02–0.16 g) on the initial reaction rate at maximum temperature 310 K and substrate concentration (0.25 mole) were thoroughly studied. The kinetics of hydrogenation of CNP carried out using 1%Pt/C indicated that the initial rates of hydrogenation had first order dependence with respect to substrate, catalyst and hydrogen pressure in the range of concentrations varied. From the Arrhenius plot of ln rate vs 1000/T, an apparent activation energy of 22 kJ mol?1 was estimated. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号