首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐conversion (HC) copolymers of aniline and o‐methoxyaniline (o‐anizidine) were synthesized for the first time by chemical oxidative copolymerization by using various polymerization techniques (simultaneous or consecutive introduction of comonomers into the polymerizing system). Low‐conversion (LC) copolymers have also been synthesized for comparison. The polymers obtained were characterized by using 1H‐NMR, infrared, and electronic absorption spectroscopy; differential scanning calorimetry; and electrical conductivity measurements. Solubility characteristics and composition of different fractions of the copolymers were also determined. It was shown that, in contrast to the LC copolymers, HC copolymers reveal relatively poor solubility. Electrical conductivity of copolymers and also of o‐methoxyaniline homopolymer is lower as compared to polyaniline, which correlates with notable hypsochromic (blue) shift of the bands in electronic absorption spectra. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1822–1828, 2005  相似文献   

2.
The frequency shifts of the six prominent infrared absorption bands were measured for films of polyethylene and ethylene–propylene copolymer as a function of temperature. Three bands (at 720, 731, and 1473 cm?1) shifted to higher frequency, and three bands (at 1463, 2849, and 2918 cm?1) shifted unexpectedly to lower frequency as the sample temperature was decreased. The greatest shift occurred with the CH2 rocking band, which increased from 730.2 to 734.2 cm?1 as the temperature was decreased from 313 to 22°K. The shift usually ceased in the temperature range from 40 to 110°K, probably because some kind of molecular motion ceased. Four mechanisms are discussed in an attempt to account for the different frequency shifts: bulk contraction with decreasing temperature, an increase in dispersion forces between chains, variation in the length and coupling of the vibrating chain molecule, and a change in the planar zigzag conformation of the chain molecule. Thermal contraction is sufficient to explain most of the observed frequency shifts. The CH2 stretching modes (2849 and 2918 cm?1) may be shifted to lower frequency by an increase in the dispersion forces between chains, caused by contraction. The displacement of the 1463 cm?1 band-shift curve is an indication of the sample density. The displacements of the 1473 and 731 cm?1 band-shift curves are indications of the proportion of propylene in the ethylene copolymer.  相似文献   

3.
The influence of intramolecular dipole–dipole interaction changes on structure formation peculiarities and some electrophysical properties were investigated with example of copolymers of vinylidene fluoride with tetrafluoroethylene and hexafluoropropylene with different compositions. The decrease of such dipole–dipole interactions in vinylidene fluoride/tetrafluoroethylene copolymers leads to an increase of the a and b parameters of the ferroelectric phase lattice and were accompanied by a shift of the Curie point to lower temperatures. The presence of peak‐halo at angles near 2θ = 18° were attributed to a paraelectric phase localized in the interfacial domains at the crystal–amorphous phase boundaries. Similar peak‐halos for vinylidene fluoride/hexafluoropropylene copolymers crystallizing into the nonpolar α phase were associated with the presence of an antiferroelectric phase formed by the chains in the planar zigzag conformation. The temperature range where dielectric anomalies were detected was characterized by conformational changes at which the decrease in planar zigzag conformation isomers took place. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
In this investigation, poly(methyl methacrylate) (PMMA) and poly(vinylidene fluoride) (PVDF) blends (w/w) were prepared in a Brabender (South Hackensack, NJ) plasticorder with a thermoplastic mixing chamber (type W60) preheated at 180°C. These blends were further converted into films by a conventional solution casting method and characterized with Fourier transform infrared spectroscopy, differential scanning calorimetry, X‐ray diffraction, mechanical property measurements, impact strength testing, ultraviolet–visible spectroscopy, refractive‐index measurements, and contact‐angle study. The Fourier transform infrared results indicated that the compatibility between these two systems resulted from hydrogen bonding between the carbonyl group of PMMA and the CH2 group of PVDF. The thermal analysis showed depressions in the glass‐transition temperature, melting temperature, and crystallization temperature. The heat of crystallization increased with an increase in the PVDF content in the blend. An increase in the heat of crystallization meant an increase in the crystallinity. An increase in the cooling rate increased the crystallization rate. The improvement in the mechanical properties of the blend films indicated that the observed behavior was ascribable to a more coherent structure of the blends due to strong specific interactions between PMMA and PVDF chains. The impact strength analysis revealed a substantial increase in the impact strength from 21.64 to 38.52 J/m. Optical absorption spectra suggested the presence of an optical band gap energy that increased with an increase in the PVDF content in the blend. The contact angle against water increased with the PVDF content in the blend film, and this was caused by the hydrophobicity of PVDF due to the CF2 group of PVDF. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Yayoi Yoshioka  Kohji Tashiro 《Polymer》2003,44(22):7007-7019
Structural changes in the Brill transitions of Nylon 10/10 and its model compounds have been investigated by carrying out the temperature-dependent measurements of X-ray diffraction and infrared spectra along with the DSC measurement. The crystal structure at room temperature was found to be the so-called α form with the all-trans zigzag methylene segments. When the samples were heated, the infrared progression bands of the methylene segments, which are sensitive to the length of all-trans segmental parts, were found to change their spectral patterns in the transition temperature region: the progression bands decreased in intensity and disappeared above the transition region. At the same time several new bands were observed to appear, which were found to correspond to the progression bands of (CH2)7-(CH2)5trans-zigzag segments. These spectral changes indicate that the methylene segments were conformationally disordered by an invasion of some gauche bonds and as a result the effective length of trans-zigzag segments became shorter. This conformational disordering was found to occur more remarkably in the methylene segment of NH-(CH2)10-NH part than the CO-(CH2)8-CO part. At the same time the infrared bands of amide groups, in particular the bands sensitive to the twisting angles about the CH2-amide bonds were found to show the remarkable change, indicating the local conformational change from planar-zigzag to twisted form in the CH2-amide moiety. The frequency shift of amide A band (NH stretching mode) indicated a weakening of intermolecular hydrogen bonds, which however, did not disappear up to the melting region. From these data combined with the X-ray diffraction data, the structural disordering in the Brill transition phenomena was deduced concretely.  相似文献   

6.
A phase transition at a temperature immediately below the melting point of poly(vinylidene fluoride) form I has been found by means of differential scanning calorimetry (d.s.c.) and infra-red (i.r.) vibrational spectroscopy. An endothermic d.s.c. shoulder has been observed at a temperature about 10°C below the melting point, in the vicinity of which the i.r. crystalline trans bands decrease in intensity steeply and the crystalline gauche bands increase in intensity, indicating the conformational change from all-trans to T3GT3G type. These observations have been found to be detectable more clearly for samples subjected to the poling treatment under a d.c. high voltage. The transition shows the characteristic behaviour essentially identical to those observed for ferroelectric copolymers of vinylidene fluoride and trifluoroethylene, except for the irreversibility of the structural change, suggesting that the phase transformation revealed here may be a ferroelectric-to-paraelectric phase transition of polar form I crystal and the the Curie point may be about 172°C. It is consistent with Micheron's measurement of the temperature dependence of the dielectric constant. Other structural changes in the form I sample occurring in the temperature range from 20° to 170°C have also been discussed based on the i.r. spectral measurements.  相似文献   

7.
Relaxation processes in copolymers of vinylidene fluoride with hexafluoropropylene (93/7) were studied by means of a dielectric method. The initial extruded film was recrystallized by free heating to temperatures above the melting point and by subsequent cooling. This increased both the perfection of the crystal phase and the degree of crystallinity. The impact of recrystallization on both the relaxation times (τ's) and the activation parameters of the local mobility (β process) and micro‐Brownian cooperative mobility in amorphous phase (αa process) was almost negligible, whereas the τ's of the αc relaxation were an order of magnitude higher after recrystallization. Qualitatively, it was predicted by the soliton model for the αc relaxation. The recrystallization affected characteristics of the transition at the highest temperature (α) registered in the region of the melting of the crystals even more. The process is related to the relaxation of the space charge formed by ionogenic impurities, which migrate through the amorphous phase with high free volume. It was shown that the dynamics in the amorphous phase controlled the drift mobility of free charge carriers and, by that, determined the τ of the space charge relaxation process. The structuring processes during the recrystallization also affected the parameters of the order–disorder transition in the low‐perfect ferroelectric (antiferroelectric) phase. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The effects of uniaxial drawing or poling on the structural changes involved in the ferroelectric-to-paraelectric phase transition in copolymers of vinylidene fluoride and trifluoroethylene were examined and compared to the behaviour of as-crystallized films. The compositions studied were 6535, 7327 and 7822mol% vinylidene fluoride/trifluoroethylene, all of which crystallize from the melt with a molecular conformation and packing analogous to those of the common piezoelectric β-phase of poly(vinylidene fluoride). Contrary to the previously described behaviour of a 5248mol% copolymer, orientation did not induce any significant changes in the structure of these copolymers or in its variation with temperature, primarily because these already crystallize directly from the melt in well-ordered, compact unit cells. On the other hand, electrical poling caused the all-trans chains of the ferroelectric phase to be packed more compactly and to survive to higher temperatures, thus shifting the Curie transition closer to the melting points of these copolymers. As a result, competition from melting interfered with the later stages of this solid-state transformation in the 7327mol% composition, and aborted it at a very early point in the 7822mol% samples. The Curie temperature was found to exhibit hysteresis between heating and cooling parts of the thermal cycle, to extend over a broad range of temperatures, and to involve intramolecular changes to the same disordered conformation found in melt-crystallized samples. Our results have allowed reasonable implications to be made concerning the existence and nature of a Curie transition in the piezoelectric β-phase of poly(vinylidene fluoride).  相似文献   

9.
In this research, a smart membrane material of graft copolymer of poly(vinylidene fluoride) with poly(N‐isopropylacrylamide) (PVDF‐g‐PNIPAAm) was synthesized by atom transfer radical polymerization (ATRP) using poly(vinylidene fluoride) (PVDF) as a macroinitiator and direct initiation of the secondary fluorinated site PVDF facilitates grafting the N‐isopropylacrylamide comonomer. The copolymers were characterized by Fourier transform infrared (FTIR), 1H NMR, gel‐permeation chromatography (GPC), and X‐ray photoelectron spectroscopy (XPS). The temperature‐sensitive membrane was prepared from the PVDF‐g‐PNIPAAm graft copolymers by the phase inversion method. The effects of temperature on the flux of pure water of membrane was investigated. The results showed that alkyl fluorides were successfully applied as ATRP initiators in the synthetic condition and the flux of pure water through the PVDF‐g‐PNIPAAm membrane depended on the temperature change. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1482–1486, 2007  相似文献   

10.
High‐conversion (HC) copolymers of aniline and o‐methoxyaniline (o‐anizidine) were synthesized for the first time by chemical oxidative copolymerization using various polymerization techniques (simultaneous or consecutive introduction of comonomers into the polymerizing system). Low‐conversion (LC) copolymers have also been synthesized for comparison. The polymers obtained were characterized using 1H‐NMR, infrared, and electronic absorption spectroscopy, differential scanning calorimetry, and electrical conductivity measurements. Solubility characteristics and composition of different fractions of the copolymers were also determined. It was shown that in contrast to the LC copolymers, HC copolymers reveal relatively poor solubility. Electrical conductivity of copolymers and also of o‐methoxyaniline homopolymer is lower compared to polyaniline, which correlates with notable hypsochromic (blue) shift of the bands in electronic absorption spectra. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 75–81, 2006  相似文献   

11.
This article describes a study on thermal behavior of poly(vinylidene fluoride‐chlorotrifluoroetheylene) [poly(VDF‐CTFE)] copolymers as polymeric binders of specific interest for high energy materials (HEMs) composites by thermal analytical techniques. The non‐isothermal thermogravimetry (TG) for poly (VDF‐CTFE) copolymers was recorded in air and N2 atmospheres. The results of TG thermograms show that poly(VDF‐CTFE) copolymers get degrade at lower temperature when in air than in N2 atmosphere. In the derivative curve, there was single maximum degradation peak (Tmax) indicating one‐stage degradation of poly(VDF‐CTFE) copolymers for all the samples. The other thermal properties such as glass transition temperature (Tg) and degradation temperature (Td) for poly(VDF‐CTFE) copolymers were measured by employing differential scanning calorimeter (DSC) technique. The kinetic parameters related to thermal degradation of poly(VDF‐CTFE) copolymers were investigated through non‐isothermal Kissinger kinetic method using DSC method. The activation energies for thermal degradation of poly(VDF‐CTFE) copolymers were found in a range of 218–278 kJ/mol. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
The molecular mobility in copolymers of vinylidene fluoride–hexafluoropropylene VDF/HFP of 93/7 and 86/14 ratios has been investigated by means of broadband dielectric relaxation spectroscopy (10?1–107 Hz), differential scanning calorimetry DSC (?100 to 150°C), and of wide angle X‐ray diffraction WAXS. Four relaxation processes and one ferroelectric‐paraelectric phase transition have been detected. The process of the local mobility β‐ (at temperatures below glass transition point) is not affected by chemical composition of the copolymer and the formed structure. Parameters of segmental mobility in the region of glass transition (αa‐relaxation) depend on the ratio of comonomer with lower kinetic flexibility. αc‐relaxation is clearly observed only in VDF/HFP 93/7 copolymer, which is characterized by a higher crystallinity and a higher perfection of crystals of α‐ (αp‐) phase. Diffuse order–disorder relaxor type ferroelectric transition connected with the destruction of the domains in low‐perfect ferroelectric phase in the amorphous regions has been detected for both copolymers. An intensive relaxation process (α‐process) was observed for both copolymers in high‐temperature region. DSC data shows that it falls on the broad temperature region of α‐phase crystals melting. It is considered to be connected with the space charge relaxation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Morphological characteristics of poly(vinylidene fluoride) (PVDF) films, filled with mass fractions (w ≤ 20%) of Barium Chloride (BaCl2), were investigated by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) absorption spectra and differential scanning calorimetry (DSC) measurements. The dielectric properties of films were measured from 250 Hz to 1 MHz range between 100 and 400 K as a function of frequency and temperature. Spectroscopic data revealed that the filled and unfilled films include α‐, β‐, and γ‐crystalline phases. By a 20% filling, 73% increase was obtained in the total degree of crystallinity. Since the BaCl2 formed fluorine bridges over the chain segments on the crystal lamellar surface, the γ‐crystalline phase decreased, whereas the total degree of crystallinity increased. Dielectric measurements showed that maximum of the dielectric loss factor belonging to β‐relaxation transition decreased linearly with filling level. The filling process did not have any effect on the real dielectric constant till α‐relaxation transition region. However, in the α‐relaxation transition region, it was determined that the real dielectric constant increased linearly with filling level. POLYM. COMPOS., 31:1782–1789, 2010. © 2010 Society of Plastics Engineers.  相似文献   

14.
The relationship between the pressure, volume, and temperature (PVT) of poly(vinylidene fluoride) homopolymers (PVDF) and poly(vinylidene fluoride)–hexafluoropropylene (PVDF–HFP) copolymers was determined in the pressure range of 200–1200 bar and in the temperature range of 40°C–230°C. The specific volume was measured for two homopolymers having a molecular weight (Mw) of 160,000–400,000 Da and three copolymers containing between 3 and 11 wt % HFP with a molecular weight range of 320,000–480,000 Da. Differential scanning calorimetry (DSC) was used to simulate the cooling process of the PVT experiments and to determine the crystallization temperature at atmospheric pressure. The obtained results were compared to the transitions observed during the PVT measurements, which were found to be pressure dependent. The results showed that the specific volume of PVDF varies between 0.57 and 0.69 cm3/g at atmospheric pressure, while at high pressure (1200 bar) it varies between 0.55 and 0.64 cm3/g. For the copolymers, the addition of HFP lowered its melting point, while the specific volume did not show a significant change. The TAIT state equation describing the dependence of specific volume on the zero‐pressure volume (V0,T), pressure, and temperature has been used to predict the specific volume of PVDF and PVDF–HFP copolymers. The experimental data was fitted with the state equation by varying the parameters in the equation. The use of the universal constant, C (0.0894), and as a variable did not affect the predictions significantly. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 230–241, 2001  相似文献   

15.
Copolymers of 2,3,4,5,6‐pentafluorostyrene (PFS) having a combination of high hydrophobicity and high glass transition temperature (Tg) are reported here for the first time. The copolymerization was carried out using N‐phenylmaleimide (NPM) as the comonomer and azobisisobutyronitrile (AIBN) as the initiator under both conventional thermal heating and microwave heating. The initial copolymerization rate was found to be higher under microwave heating than under thermal heating. The copolymerization parameters were determined using the Fineman–Ross method and were found to be r1 (NPM) = 0.28 and r2 (PFS) = 0.86. Increased incorporation of NPM in the copolymers led to an increase in Tg of the copolymers without significantly affecting the hydrophobicity of poly(2,3,4,5,6‐pentafluorostyrene). Thermal stability of the copolymers is also reported. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
The relationship of valence-coordinate deformation to the temperature dependence of some infrared peak-absorption frequencies in Poly(vinyl chloride) (PVC) and polystyrene (PS) is stated. A skeletal band and a CH2 rocking band in PVC and a ring-mode band in PS were studied in two kinds of experiments: steady heating and cooling of a quenched (nonequilibrium, glassy) sample through its glass-transition temperature, Tg, and long-term annealing of quenched samples below Tg, followed by steady heating and cooling. The results, a slope discontinuity, ΔM, in the v(T) relation at Tg and a frequency shift, Δviso, during isothermal annealing below Tg, are analyzed in two theoretical approaches. Interchain and intrachain contributions to the observed frequency shifts are expected to occur with a differing relative significance in different kinds of molecular vibrations, leading to one possible method of distinguishing valence-coordinate deformation (chain strain) from other effects.  相似文献   

17.
The specific heat (C) and thermal diffusivity (D) of vinylidene fluoride (VDF)/trifluoroethylene copolymers with 70 and 56 mol % of VDF were measured between 200 and 390 K, and the thermal conductivity (K) was calculated from these data. C, D, and K were rather insensitive to the VDF content but varied significantly with the crystallinity. At room temperature, as the crystallinity increased from about 55 to 85%, C decreased by 17%, and D and K increased by 60 and 40%, respectively. For the copolymer with 70 mol % VDF, C exhibited a broad peak, whereas D showed an abrupt drop at the ferroelectric–paraelectric transition near 370 K on heating. The transition temperature on cooling was about 40 K below that observed in the heating run, thus revealing a large thermal hysteresis. For the copolymer with 56 mol % VDF, the transition temperature was much lower, the transition region was narrower, and the thermal hysteresis was barely observable. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3160–3166, 2003  相似文献   

18.
The grafting of a phenate bearing sulfonate group in solution onto commercially available poly(VDF‐co‐HFP) copolymers, where VDF and HFP stand for vinylidene fluoride and hexafluoropropene, respectively, is presented. This reaction leads to novel fluoropolymers, bearing aryl sulfonic acid side functions, which are fuel cell membrane precursors. A mechanism similar to the grafting of bisphenol onto VDF‐containing copolymers is discussed. First, the sulfonate phenate is modified to give the didecyldimethylammonium bromide sulfonate phenate salt, in order to promote the substitution onto a fluorine atom in VDF unit adjacent to one HFP unit onto a fluorine atom in the copolymer. The substitution of this salt onto the fluorinated copolymer yields low molar percentages of grafted phenate, ranging from 1.8 to 5.1 mol‐%, whereas it reaches values up to 13 mol‐% grafting when the NH2‐CH2‐CH2‐S‐CH2‐CH2‐C6H4‐SO3Na amine is used as the grafting agent. NMR characterization is used to monitor the grafting process. The electrochemical properties of the resulting phenate grafted‐poly(VDF‐co‐HFP) copolymer are studied. The theoretical ion exchange capacities are half that of Nafion®. The proton conductivities are also lower than that of Nafion®, although one conductivity measurement reached a value of 5.1 mS cm–1, showing a non‐negligible conductivity. The water uptake is lower than these noted for a sulfonated amine‐grafted copolymer, and is of the same order as that for Nafion®. Finally, it is shown that these novel materials start to decompose above 200 °C, showing a similar thermostability as that of an amino‐containing aryl sulfonate‐grafted poly(VDF‐co‐HFP) copolymer.  相似文献   

19.
A series of aliphatic polyesters having CH2/COO ratios from 2 to 14 in their repeat units were blended with a copolymer of vinylidene chloride containing 13.5% by weight of vinyl chloride. Blends of polyesters having CH2/COO < 4 did not form completely miscible amorphous phases, whereas polyesters having CH2/COO ≥ 4 did form completely homogeneous amorphous phases for all temperatures below the decomposition point except for the polyester with CH2/COO = 14 which showed reversible phase separation on heating, i.e., lower critical solution temperature behavior. Interaction parameters were estimated by melting point depression and by analog calorimetry. The behavior reported here is qualitatively similar to that reported earlier for blends of aliphatic polyesters with poly(vinyl chloride), polyepichlorohydrin, polycarbonate, styrene–allyl alcohol copolymers, and the hydroxy ether of bisphenol A.  相似文献   

20.
Poly(ethylethylenimine), PEEI, was prepared from poly(ethylenimine) by reductive alkylation with acetaldehyde. Samples of PEEI and poly(methylenimine), PMEI, complexed with LiCF3SO3 were prepared and characterized using differential scanning calorimetry and FT-IR. Small differences in the room temperature spectra of the two complexes were noted; these differences were due to the presence of a CH2 group in the side chain of PEEI. The predominant form of cation-anion interactions was a contact ion pair. As the samples were heated, a transition from ion pairs to “free” ions was observed, with most of the change occurring between 140 and 150 °C in both PEEI and PMEI complexes. Thermal cycling established that the transition was irreversible in the time frame of the cycling experiments. Two-dimensional correlation spectroscopy did not show any significant intensity or frequency changes in bands sensitive to cation-polymer interactions during any heating or cooling cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号