首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice husk ash was incorporated into natural rubber (NR) using a laboratory size two‐roll mill. Curing using a conventional vulcanization system (CV) was chosen, and cure studies were carried out on a Monsanto rheometer. Physical testing of the NR vulcanizates involved the determination of tensile, tear, and abrasion resistances, and hardness. Fourier transform infrared spectroscopy (FTIR) analysis was done to verify the presence of the characteristic functional groups of precipitated silica in MHA (milled husk ash) and THA (treated husk ash). The effect of the coupling agent, bis(3‐triethoxysilylpropyl)‐tetrasulfane (Si‐69), on the curing and physical properties of the vulcanizates was investigated. A chemical treatment on a rice husk ash was done, and the effects of this procedure are also reported. For comparison, two commercial fillers, precipitated silica (Zeosil‐175) and carbon black (N774), were also used. Although the presence of the silane coupling agent had not brought the expected increase in properties, treated husk ash showed exceptional performance in terms of tensile strength and abrasion resistance of the filled vulcanizates. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1019–1027, 2000  相似文献   

2.
The mechanical, morphological behavior and water absorption characteristics of polypropylene (PP) and silica, or PP and rice‐husk, composites have been studied. The silica used in this study as filler was a commercial type produced from soluble glass or rice husks. The compatibilizing effect of PP grafted with monomethyl itaconate (PP‐g‐MMI) and/or with vinyltriethoxysilane (PP‐g‐VTES) as polar monomers on the mechanical properties and water absorption was also investigated. In general, a high loading of the studied fillers in the polymer matrix increases the stiffness and the water absorption capacity. This effect is more noticeable in the tensile modulus of the PP/silica composite with PP‐g‐VTES as compatibilizer. However, the increase of the rice‐husk charge as a natural filler in the PP matrix decreases the stiffness, and in the presence of PP‐g‐MMI as compatibilizer in PP/rice‐husk, the tensile modulus and water absorption of the composite were improved. The better adhesion and phase continuity in the PP/silica and PP/rice‐husk composites with different compatibilizers was confirmed by the morphological study. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
以PLA、稻壳粉为原材料,分别加入玻璃纤维、乙烯-辛烯共聚物(POE)、碳酸钙为增韧剂进行增韧改性,以模压成型的方法制备了PLA/稻壳木塑复合材料,结合力学性能、吸水性能、X射线衍射(XRD)分析和对材料表面的显微观察研究了不同种类及含量的增韧剂对木塑复合材料力学性能的影响。结果表明,在玻璃纤维含量为20%的时候,PLA/稻壳木塑复合材料的增韧效果较好,其洛氏硬度值达68,其拉伸强度达到6.16 MPa,弯曲强度达到15.41 MPa,冲击强度为144.40 kJ/m2,但吸水性能显著提高,约为不添加增韧剂时的1.5倍;在POE含量为20%的时候,PLA/稻壳木塑复合材料吸水性降低效果最为显著,60 h浸泡实验其吸水率比不添加POE小10%。XRD分析及显微分析表明,除CaCO3自身结构影响外,添加不同增韧剂均未使PLA/稻壳复合材料形成新的晶型结构,加入POE和CaCO3的增韧效果不明显,是因为两种物质颗粒孤立存在于基体中,未形成相互搭连的网格结构。  相似文献   

4.
The effect of the filler volume fraction on the tensile behavior of injection‐molded rice husk‐filled polypropylene (RH–PP) composites was studied. Hygrothermal aging behavior was also investigated by immersing the specimens in distilled water at 30 and 90°C. The kinetics of moisture absorption was studied from the amount of water uptake by specimens at regular interval times. It was found that the diffusion coefficient and the maximum moisture content are dependent on the filler volume fraction and the immersion temperatures. Incorporation of RH into the PP matrix has led to a significant improvement in the tensile modulus and a moderate improvement in the tensile strength. Elongation at break and energy at break, on the other hand, decreased drastically with the incorporation of the RH filler. The extent of deterioration incurred by hygrothermal aging was dependent on the immersion temperature. Both the tensile strength and tensile modulus deteriorated as a result of the combined effect of thermal aging and moisture attack. Furthermore, the tensile properties were not recovered upon redrying of the specimens. Scanning electron microscopy was used to investigate the mode of failure of the RH–PP composites. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 742–753, 2001  相似文献   

5.
Oil palm empty fruit bunch–polypropylene (EFB‐PP) composites have been produced using a twin‐screw extruder as the compounding equipment. Two levels of EFB were employed, 40 % and 60 % of the total weight of the sample. Three types of coupling agent, maleic anhydride‐modified polypropylene (commercial name Epolene E‐43), polymethylene(polyphenyl isocyanate) (PMPPIC) and 3‐(trimethoxysilyl)‐propylmethacrylate (TPM), were used. Overall, all coupling agents imparted considerable improvements in the flexural properties, E‐43 showing the highest enhancement. However, only E‐43 was observed to improve impact strength and tensile properties of the composites. All composites with coupling agents showed lower water absorption and thickness swelling. The absorption and swelling decreased as the loading of the coupling agents was increased. © 2000 Society of Chemical Industry  相似文献   

6.
White rice husk ash (WRHA)–polypropylene (PP)/natural rubber (NR) composites were prepared using a Brabender Plasticorder at 180 °C and a rotor speed of 50 rev min?1. The mechanical and water‐absorption properties were studied. The incorporation of WRHA into the PP/NR matrix has resulted in the improvement of the tensile modulus; however, the tensile strength, elongation at break and stress at yield decreased with increasing WRHA loading. Poor filler matrix interactions are believed to be responsible for the decrease in the properties. Incorporation of a silane coupling agent, 3‐aminopropyl triethoxysilane (3‐APE), improved tensile modulus, tensile strength and stress at yield of the composites. Water‐absorption studies indicate that the use of the coupling agent reduced the amount of water absorbed by the composites. © 2001 Society of Chemical Industry  相似文献   

7.
Mechanical properties and thermal stability of epoxy foams filled with white and black rice husk ash were studied. Epoxy foams were prepared from a commercial system and filled with different amounts of both the ashes (0, 6.8, 12.8, 18.0, and 22.7 wt %). The incorporation of both the ashes modified the final morphology of the foam, decreasing the average cell size and increasing the number of cells per volume unit. For all filler percentages used, the specific modulus and strength results showed that the white ash is more effective as reinforcing agent than the black ash. The initial degradation temperature was not affected by the content and type of ash used as the filler. The integral procedure decomposition temperature, weight loss, and char residue results were related to the ash type and atmosphere used in the thermogravimetric analysis. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

8.
In this work a comparative study on the impact and tensile properties of polyester/sisal fiber reinforced composites was undertaken. The polyester matrix was used bare and modified with: (1) a silane coupling agent; (2) a flame retardant system; and (3) a blend of the silane agent and the flame retardant system. The experimental results show that the flame retardant acts as a particulate reinforcement to the polyester matrix and the silane coupling agent acts as a plasticizer. The simultaneous addition of these two compounds to the polyester resin tended to decrease the performance of the composites. The results obtained show that strength or toughness could be tailored, and although none of the composites manufactured with the modified polyester matrices showed a significant improvement on the fiber–matrix interface strength, a better compromise between impact and tensile properties was obtained with the silane modified matrix. The critical fiber volume fraction was also evaluated and shown to be less than 10% for the sisal–polyester composite investigated here. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1209–1217, 2004  相似文献   

9.
The performance of white rice husk ash (WRHA) as filler for polypropylene (PP)/ethylene‐propylene‐diene terpolymer (EPDM) thermoplastic elastomer (TPE) composites was investigated. The composites with different filler loadings were prepared in a Brabender plasticorder internal mixer. Both unvulcanized and dynamically vulcanized composites were prepared. Mixing and vulcanization processes of the composites were monitored through the typical Brabender torque‐time curves. The mechanical properties and morphology of the composites were also studied. The Brabender torque curves revealed that the dynamic vulcanization process employed was successful and incorporation of filler has no adverse effect on the processibility of the composites. Incorporation of WRHA improves the tensile modulus and flexural modulus and lowers tensile strength, elongation at break, tear strength, and toughness of both types of composites. Dynamic vulcanization significantly enhances the mechanical and TPE properties of the composites. Dynamic mechanical analysis (DMA) study revealed the existence of two phases in both types of composites. It further shows that neither dynamic vulcanization nor filler agglomeration has played a prominent role in the compatibility of the composites. Thermogravimetric investigation shows that dynamic vulcanization or WRHA loading has not adversely affected the thermal stability of the composites. The scanning electron micrographs provide evidence for the tendency to form filler agglomerates with increasing filler loading, better filler dispersion of dynamically vulcanized composites over unvulcanized composites, and effective vulcanization of elastomer phase of the composites in the presence of filler. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 438–453, 2002  相似文献   

10.
The storage of postconsumer glass fiber reinforced unsaturated polyester composite impacts negatively on the environment because of the long lifetime and the volume/amount ratio of residuals, which are important aspects to be considered. Two types of additives were employed as an attempt to improve the mechanical properties of sheets manufactured with ground postconsumer glass fiber reinforced orthophthalic unsaturated polyester resin composite and virgin orthophthalic unsaturated polyester resin, a silane‐coupling agent and an organic dispersant. Flexural and impact tests, and dynamic mechanical analyses, demonstrated that the coupling agent increased the mechanical properties, while the dispersant decreased these properties, compared to material without either additive. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1834–1839, 2004  相似文献   

11.
The various ratios of recycled polyethylene terephthalate (rPET) into polypropylene (PP) filled with 40 parts chopped rice husk per hundred part of polymer have been studied. Composites were prepared using a corotating twin screw extruder at temperature zones of 165–215, well below 250°C (rPET mp temperature) and characterized by mechanical and thermal properties. To improve the compatibility between different components, PP grafted with maleic anhydride was added as a coupling agent in all the compositions studied. The results showed that the addition of rPET improved the tensile and flexural modulus and impact strength of the composite while reducing its tensile and flexural strength. The scanning electron microscopy micrographs of samples in the injection direction showed that some particle shaped rPET inside the composites appear as drawn fibrils and some appear as plates. Differential scanning calorimetric studies showed that the addition of rPET particles to the composites decrease the PP crystallization temperatures. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
章旭  许丹  熊源泉 《化工进展》2020,39(7):2632-2638
为了探究水热预处理对稻壳焦热电性能的影响,首先通过不同水热温度对稻壳进行改性处理,分析了其燃料特性、官能团以及热解特性。再于550℃下热解,针对热解后的稻壳焦采用工业分析、元素分析、红外光谱(FTIR)分析、X射线衍射(XRD)分析和N2吸附脱附等方法研究改性前后稻壳焦特性及微观结构。结果表明:水热预处理后稻壳中半纤维素、碱金属和碱土金属大量减少,挥发分含量增加,并获得更多的含氧官能团。经改性后水热稻壳焦比表面积和总孔容积提高,在水热温度为150℃时达到最大比表面积335.1m2/g和最大总孔容积0.173cm3/g。用改性前后稻壳焦作为电极材料,NaCl为电解液,发现改性后稻壳焦输出电压提升明显,在50K温差下,输出电压为67.084mV,比能量为106.7mJ/g,展现了改性稻壳焦作为一种低成本多孔炭优异的热电转化性能。  相似文献   

13.
The water sorption characteristics of banana fiber–reinforced polyester composites were studied by immersion in distilled water at 28, 50, 70, and 90°C. The effect of hybridization with glass fiber and the chemical modification of the fiber on the water absorption properties of the prepared composites were also evaluated. In the case of hybrid composites, water uptake decreased with increase of glass fiber content. In the case of chemically modified fiber composites, water uptake was found to be dependent on the chemical treatment done on the fiber surface. Weight change profiles of the composites at higher temperature indicated that the diffusion is close to Fickian. The water absorption showed a multistage mechanism in all cases at lower temperatures. Chemical modification was found to affect the water uptake of the composite. Among the treated composites the lowest water uptake was observed for composites treated with silane A1100. Finally, parameters like diffusion, sorption, and permeability coefficients were determined. It was observed that equilibrium water uptake is dependent on the nature of the composite and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3856–3865, 2004  相似文献   

14.
将稻壳在多元醇中液化制备具有反应活性的稻壳基多元醇,然后以所制备的稻壳基多元醇、低聚物多元醇、二苯基甲烷二异氰酸酯(MDI)和小分子交联剂等为主要原料合成聚氨酯(PU)乳液。分别从预聚反应温度、稻壳基多元醇的添加量、低聚物多元醇种类、R值(-NCO与-OH的摩尔比)以及小分子交联剂种类5个方面进行研究。通过对所制备的聚氨酯乳液进行红外光谱、黏度、稳定性和力学性能等分析测试,结果表明:在预聚反应温度为70℃、聚己二酸丁二醇酯1000(PBA1000)为原料、稻壳基多元醇添加量为10%、R值为1.2、三羟甲基丙烷(TMP)为交联剂的条件下,合成的PU胶黏剂效果最佳。  相似文献   

15.
Carbon black (CB) reinforced polyester resin (PR) composites (CPC) have been fabricated from mechanical mixtures of liquid PR and CB powder having 0–50 wt% CB contents and cured with 1% of methyl ethyl ketone peroxide at room temperature under a pressure of 50 MPa. The samples have been examined by the Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD) technique, scanning electron microscopy (SEM), mechanical test, micromechanical test, differential thermal analysis (DTA), and thermogravimetric analysis (TGA) and electrical test. FTIR spectra confirm the physical and chemical bond formations between CB and PR. XRD shows a very partial crystalline structure in cured PR and hexagonal structure in CB particles. SEM exhibits a clear dispersion of CB particles in PR matrix at lower loading and aggregates at higher loading. With the increase of fillers, while the tensile and flexural strengths of CPCs decrease, the Young's and tangent modulii increase by 80 and 100%, respectively. These increments are found consistent with the theoretical values. The degree of physical crosslinking between CB and PR as well as the aspect ratio of CB in CPCs are found to increase with the increase of filler. A remarkable increase in microhardness of about 61% at 50 wt% CB content is observed. The TGA represents that the thermal degradation temperature for pure PR is 373°C and that for CPC is 393°C. The dielectric constant of CPCs decreases with increasing frequency, whereas the ac‐ and dc‐ conductivities of CPC are found to increase with CB content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40421.  相似文献   

16.
It is well known that most of the dielectric failures occur in high voltage equipment due to absorption of moisture by the insulating material from the environment. Hence, the effect of absorbed moisture on electrical and mechanical properties of silica-unsaturated polyester resin (UPR) composites has been evaluated. The absorption of moisture in silica-UPR composites does not show any significant change in electrical and mechanical properties. The effect of acetone and water absorption on silica-UPR composites was determined and it was that found silica-UPR composite shows higher acetone absorption when compared with water. The differential scanning calorimetry and thermal gravimetric analysis studies of silica-UPR composites show no significant change in glass transition temperature using prehumidified (0–95% RH) silica filler. As there is no significant change in thermal and mechanical properties after exposure to humid conditions, it can be concluded that water does not penetrate inside the polymer matrix. Hence, the silica particles are the best choice to use as filler in UPR matrix for UPR composite used in electrical equipment. The developed silica-UPR composite was successfully used in the preparation of medium voltage inductive transformers. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
An attempt was made to improve the toughness of fly ash (FA)/general‐purpose unsaturated polyester resin (GPR) composites. Elastomer [styrene–butadiene rubber (SBR) or acrylic copolymer (AC)]‐encapsulated fillers (FA or CaCO3) were made through the coagulation of the emulsified elastomer containing the filler with constant stirring. The elastomer‐encapsulated fillers were added to GPR at concentrations as high as 15 wt % to make FA/SBR or AC/GPR composites. The mechanical properties (i.e., the tensile strength, tensile modulus, tensile elongation, flexural strength, flexural modulus, impact strength, and hardness) of FA/GPR, FA/SBR/GPR, and FA/AC/GPR composites were studied. The tensile‐fractured surfaces of all the composites were studied with scanning electron microscopy. The thermal stability was studied with thermogravimetric analysis. An analysis of the results indicate that this modification technique is rather easy and more economical than the chemical modification of filler surfaces with functional silane coupling agents. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 171–184, 2005  相似文献   

18.
Flour rice husk (FRH) was employed as a filler in block copolymer polypropylene (PPB) in order to prepare polymer‐based reinforced composites. Four coupling agents were selected to modify the surface of the rice husk in the composite materials, including two types of functionalized polymers [PP homopolymer grafted with maleic anhydride (MA‐PP) and an elastomer styrene–ethylene–butadiene–styrene triblock copolymer grafted with MA (MA‐SEBS)] and two bifunctional organometallic coupling agents (silane and titanate with linear low‐density polyethylene as a carrier). The influence of each type of coupling agent on the interfacial bonding strength was studied by dynamic mechanical analysis, scanning electronic microscopy, and rheological tests. The results showed that strong interactions were formed between the coupling agents and the filler surface. The addition of a coupling agent with an elastomeric carrier (MA‐SEBS) increased the loss tangent and reduced the storage modulus of the composite. A similar but less intense effect was observed for the titanate coupling agent. However, an antagonistic performance was obtained when MA‐PP and silane were employed as coupling agents. In addition, when the percentage of MA‐SEBS was increased, the impact properties of FRH/PPB blends were improved and the strength was reduced. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1823–1831, 2006  相似文献   

19.
Ethylene–propylene–diene rubber (EPDM)/montmorillonite (MMT) composites were prepared through a melt process, and three kinds of surfactants with different ammonium cations were used to modify MMT and affect the morphology of the composites. The morphology of the composites depended on the alkyl ammonium salt length, that is, the hydrophobicity of the organic surfactants. Organophilic montmorillonite (OMMT), modified by octadecyltrimethyl ammonium salt and distearyldimethyl ammonium salt, was intercalated and partially exfoliated in the EPDM matrix, whereas OMMT modified by hexadecyltrimethyl ammonium chloride exhibited a morphology in which OMMT existed as a common filler. Ethylene–propylene–diene rubber grafted with maleic anhydride (MAH‐g‐EPDM) was used as a compatibilizer and greatly affected the dispersion of OMMT. When OMMTs were modified by octadecyltrimethyl ammonium chloride and distearydimethyl ammonium chloride, the EPDM/OMMT/MAH‐g‐EPDM composites (100/15/5) had an exfoliated structure, and they showed good mechanical properties and high dynamic moduli. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 638–646, 2004  相似文献   

20.
In this article, rice husk flour filler/polypropylene (RH/PP) composites with different ratios of the filler were prepared without and with maleated PP, which was used as a compatibilizer. The RH filler in the RH/PP composites was treated with acid and alkali, and their mechanical properties were measured. The mechanical properties were improved with the addition of the compatibilizer. In this study, grafting of maleic anhydride (MA) onto PP with different ratios of benzoyl peroxide (BPO) and MA was prepared. Infrared analysis showed characteristic bands at 1786 and 1863 cm−1 for the grafted sample (maleated PP). Also, from chemical titration, the optimum MA and BPO contents were 4 and 1 part per hundred parts (php of polymer), respectively. The results showed that the morphology of the grafted sample was a flat with coarse surface, and that of the composite clearly elucidated that the interfacial bonding between RH and PP was enhanced by the presence of the compatibilizer. Thermal stability of the grafted PP was enhanced by the grafting process. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号