首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(aryl ether ketone)s (PAEKs) are a class of high‐performance engineering thermoplastics known for their excellent combination of chemical, physical and mechanical properties, and the synthesis of semicrystalline PAEKs with increased glass transition temperatures (Tg) is of much interest. In the work reported, a series of novel copolymers of poly(ether ketone ketone) (PEKK) and poly(ether amide ether amide ether ketone ketone) were synthesized by electrophilic solution polycondensation of terephthaloyl chloride with a mixture of diphenyl ether and N,N′‐bis(4‐phenoxybenzoyl)‐4,4′‐diaminodiphenyl ether (BPBDAE) under mild conditions. The copolymers obtained were characterized using various physicochemical techniques. The copolymers with 10–35 mol% BPBDAE are semicrystalline and have markedly increased Tg over commercially available poly(ether ether ketone) and PEKK due to the incorporation of amide linkages in the main chain. The copolymers with 30–35 mol% BPBDAE not only have high Tg of 178–186 °C, but also moderate melting temperatures of 335–339 °C, having good potential for melt processing. The copolymers with 30–35 mol% BPBDAE have tensile strengths of 102.4–103.8 MPa, Young's moduli of 2.33–2.45 GPa and elongations at break of 11.7–13.2%, and exhibit high thermal stability and good resistance to organic solvents. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
A new monomer, N,N′‐bis(4‐phenoxybenzoyl)‐m‐phenylenediamine (BPPD), was prepared by condensation of m‐phenylenediamine with 4‐phenoxybenzoyl chloride in N,N‐dimethylacetamide (DMAc). A series of novel poly(ether amide ether ketone) (PEAEK)/poly(ether ketone ketone) (PEKK) copolymers were synthesized by the electrophilic Friedel‐Crafts solution copolycondensation of terephthaloyl chloride (TPC) with a mixture of diphenyl ether (DPE) and BPPD, over a wide range of DPE/BPPD molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The influence of reaction conditions on the preparation of copolymers was examined. The copolymers obtained were characterized by different physicochemical techniques. The copolymers with 10–25 mol % BPPD were semicrystalline and had remarkably increased Tgs over commercially available PEEK and PEKK due to the incorporation of amide linkages in the main chains. The copolymers III and IV with 20–25 mol % BPPD had not only high Tgs of 184–188°C, but also moderate Tms of 323–344°C, having good potential for the melt processing. The copolymers III and IV had tensile strengths of 103.7–105.3 MPa, Young's moduli of 3.04–3.11 GPa, and elongations at break of 8–9% and exhibited outstanding thermal stability and good resistance to organic solvents. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
2,6‐Bis(β‐naphthoxy)benzonitrile (BNOBN) was synthesized by reaction of β‐naphthol with 2,6‐difluorobenzonitrile in N‐methyl‐2‐pyrrolidone (NMP) in the presence of KOH and K2CO3. Poly(ether ketone ether ketone ketone)(PEKEKK) /poly(ether ether ketone ketone) (PEEKK) copolymers containing naphthalene and pendant cyano groups were obtained by electrophilic Friedel‐Crafts polycondensation of terephthaloyl chloride (TPC) with varying mole proportions of 4,4′‐diphenoxybenzophenone (DPOBP) and 2,6‐bis(β‐naphthoxy)benzonitrile (BNOBN) using 1,2‐dichloroethane (DCE) as solvent and NMP as Lewis base in the presence of anhydrous AlCl3. The resulting polymers were characterized by various analytical techniques, such as FTIR, DSC, TG, and WAXD. The results indicated that the crystallinity and melting temperature of the polymers decreased with increase in concentration of the BNOBN units in the polymer, the glass transition temperature of the polymers increased with increase in concentration of the BNOBN units in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 536°C in N2 atmosphere. The copolymers have good resistance to acidity, alkali, and organic solvents. Because of the melting temperature (Tm) depression with increase in the BNOBN content in the reaction system, the processability of the resultant coplymers could be effectively improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
2,6‐Diphenoxybenzonitrile (DPOBN) was synthesized by reaction of phenol with 2,6‐difluorobenzonitrile in N‐methyl‐2‐pyrrolidone in the presence of KOH and K2CO3. Poly(aryl ether ketone ketone)/poly(aryl ether ether ketone ketone) copolymers with pendant cyano groups were prepared by the Friedel–Crafts electrophilic substitution reaction of terephthaloyl chloride with varying mole proportions of diphenyl ether and DPOBN using 1,2‐dichloroethane as solvent and N‐methyl‐2‐pyrrolidone as Lewis base in the presence of anhydrous AlCl3. The resulting polymers were characterized by various analytical techniques, such as FT‐IR, differential scanning calorimeter, thermal gravimetric analysis, and wide‐angle X‐ray diffraction. The crystallinity and melting temperature of the polymers were found to decrease with increase in concentration of the DPOBN units in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 514°C in N2 atmosphere. The glass transition temperature was found to increase with increase in concentration of the DPOBN units in the polymer when the molar ratios of DPOBN to DPE ranged from 10/90 to 30/70. The copolymers containing 30–40 mol % of the DPOBN units exhibit excellent thermostability at (350 ± 10)°C and have good resistance to acidity, alkali, and organic solvents. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3601–3606, 2007  相似文献   

5.
Two monomers, 4,4′‐bis(4‐phenoxybenzoyl)biphenyl (BPOBBP) and 4,4′‐diphenoxydiphenyl sulfone (DPODPS), were conveniently synthesized via simple synthetic procedures from readily available materials. A series of novel poly(aryl ether ketone)s containing both biphenylene moieties and sulfone linkages in the main chain were synthesized by the modified electrophilic Friedel‐Crafts acylation copolycondensation of isophthaloyl chloride (IPC) with a mixture of BPOBBP and DPODPS, over a wide range of BPOBBP/DPODPS molar ratios. The resulting polymers were characterized by Fourier transform infrared spectroscopy (FT‐IR), wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), etc. The results indicated that the copolymers with 30 to 35 mol% DPODPS were semicrystalline and had remarkably increased glass transition temperatures (Tgs) over the conventional poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK) due to the incorporation of biphenylene units and sulfone linkages in the main chain. The copolymers with 30 to 35 mol% DPODPS had not only high Tgs of 176 to 177°C, but also moderate melting temperatures (Tms) of 334 to 337°C, having good potential for the melt processing. The semicrystalline copolymers II to V had tensile strengths of 99.8 to 103.1 MPa, Young's moduli of 2.26 to 2.79 GPa, and elongations at break of 16.8 to 26.5% and exhibited outstanding thermal stability and good resistance to organic solvents. POLYM. ENG. SCI., 55:2140–2147, 2015. © 2015 Society of Plastics Engineers  相似文献   

6.
Poly(ether sulfone) and poly(ether sulfone ketone) copolymers (I–V) were synthesized by the nucleophilic substitution reaction of 4,4′-dihydroxy diphenyl sulfone (DHDPS, A) with various mole proportions 4,4′-difluoro benzophenone (DFBP, B) and 4,4′-difluoro diphenyl sulfone (DFDPS, C) using sulfolane as solvent in the presence of anhydrous K2CO3. The polymers were characterized by physicochemical and spectroscopic techniques. All polymers were found to be amorphous, and the glass transition temperature (Tg) was found to increase with the sulfonyl content of the polymers. 13C-nuclear magnetic resonance (NMR) spectral data was interpreted in terms of the compositional triads, BAB, BAC, CAC, ABA, and ABB, and indicate that transetherification occurs at high concentration of DFBP units in the polymer (IV). The good agreement between the observed and calculated feed ratios validates the triad analysis. Thermal decomposition studies reveal that the thermal stability of the polymers increases with increase in the carbonyl content in the polymer. Activation energies for thermal decomposition were found to be in the range of 160–203 kJ mol−1 with the cleavage of ϕ SO2 bond being the preponderant mode of decomposition and depended on the block length of the sulfonyl unit. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2113–2121, 1999  相似文献   

7.
Soluble, thermally stable phthalazinone poly(aryl ether sulfone ketone)s (PPESKs) containing a carboxyl group in its side chain have been synthesized by the nucleophilic displacement reaction of 4‐(4‐hydroxylphenyl)‐1(2H)‐phthalazinone with bis(4‐chlorophenyl) sulfone, 4,4′‐difluoro‐benzophenone, and phenolphthalin. The polymerization reactions were conducted in sulfolane in the presence of K2CO3 to give high molecular weight polymers, which are soluble in solvent such as nitrobenzene and pyridine at room temperature and easily cast into flexible, yellow, and transparent film. The polymers are amorphous with high glass transition temperature. The decomposition temperature of the polymers are >400°C, which indicates high thermal stability. The crosslinking reaction of PPESK can occur by using dicyandiamide (Dicy) as curing agent. The apparent energy (ΔE) is 52.2 kJ/mol and reaction order (n) is close to 1.0. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1111–1114, 2003  相似文献   

8.
A novel monomer of tetrachloroterephthaloyl chloride (TCTPC) was prepared by the chlorination of terephthaloyl chloride catalyzed by ferric chloride at 175–180°C for 10 h and confirmed by FTIR, MS, and elemental analysis. Five new polychloro substituted poly(aryl ether ketone sulfone)s (PEKSs) with inherent viscosities of 0.68–0.75 dL/g have been prepared from 4,4′‐diphenoxydiphenylsulfone, 4,4′‐bis(2‐methylphenoxy) diphenylsulfone, 4,4′‐bis(3‐methylph‐enoxy)diphenylsulfone, 4,4′‐bis(2,6‐dimethylphenoxy)diphenylsulfone, and 4,4′‐bis(1‐naphthoxy)‐diphenylsulfone with TCTPC by electrophilic Friedel‐Crafts acylation in the presence of DMF with anhydrous AlCl3 as a catalyst in 1,2‐dichloroethane, respectively. These polymers having weight–average molecular weight in the range of 76,600–83,900 are all amorphous and show high glass transition temperatures ranging from 213 to 250°C, the 5% weight loss temperature over 450°C, high char yields of 60–67% at 700°C in nitrogen and good solubility in CHCl3 and polar solvents such as DMF, DMSO, and NMP at room temperature. All the polymers formed transparent, strong, and flexible films, with tensile strengths of 85.1–90.8 MPa, Young's moduli of 2.52–3.24 GPa, and elongations at break of 21.2–27.2%. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Several novel aromatic poly(ether ketone)s containing pendant methyl groups and sulfone linkages with inherent viscosities of 0.62–0.65 dL/g were prepared from 2‐methyldiphenylether and 3‐methyldiphenylether with 4,4′‐bis(4‐chloroformylphenoxy)diphenylsulfone and 4,4′‐bis (3‐chloroformylphenoxy)diphenylsulfone by electrophilic Friedel–Crafts acylation in the presence of N,N‐dimethylformamide with anhydrous AlCl3 as a catalyst in 1,2‐dichloroethane. These polymers, having weight‐average molecular weights in the range of 57,000–71,000, were all amorphous and showed high glass‐transition temperatures ranging from 160.5 to 167°C, excellent thermal stability at temperatures over 450°C in air or nitrogen, high char yields of 52–57% in nitrogen, and good solubility in CHCl3 and polar solvents such as N,N‐dimethylformamide, dimethyl sulfoxide, and N‐methyl‐2‐pyrrolidone at room temperature. All the polymers formed transparent, strong, and flexible films, with tensile strengths of 84.6–90.4 MPa, Young's moduli of 2.33–2.71 GPa, and elongations at break of 26.1–27.4%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Poly(ether ether ketone)s and poly(ether ether ketone ketone)s containing pendant pentadecyl chains were synthesized by polycondensation of each of the two bisphenol monomers viz, 1,1,1‐[bis(4‐hydroxyphenyl)‐4′‐pentadecylphenyl]ethane and 1,1‐bis(4‐hydroxyphenyl)‐3‐pentadecyl cyclohexane with activated aromatic dihalides namely, 4,4′‐difluorobenzophenone, and 1,3‐bis(4‐fluorobenzoyl)benzene in a solvent mixture of N,N‐dimethylacetamide and toluene, in the presence of anhydrous potassium carbonate. Polymers were isolated as white fibrous materials with inherent viscosities and number average molecular weights in the range 0.70–1.27 dL g?1 and 76,620–1,36,720, respectively. Poly(ether ether ketone)s and poly(ether ether ketone ketone)s were found to be soluble at room temperature in organic solvents such as chloroform, dichloromethane, tetrahydrofuran, and pyridine and could be cast into tough, transparent, and flexible films from their solutions in chloroform. Wide angle X‐ray diffraction patterns exhibited a broad halo at around 2θ = ~ 19° indicating that the polymers containing pentadecyl chains were amorphous in nature. In the small‐angle region, diffuse reflections of a typically layered structures resulting from the packing of pentadecyl side chains were observed. The temperature at 10% weight loss, obtained from TG curves, for poly(ether ether ketone)s and poly(ether ether ketone ketone)s were in the range 416–459°C, indicating their good thermal stability. A substantial drop in glass transition temperatures (68–78°C) was observed for poly(ether ether ketone)s and poly(ether ether ketone ketone)s due to “internal plasticization” effect of flexible pendant pentadecyl chains. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
A series of well‐defined poly(ether ketone ketone) (PEKK)/sodium sulfonated poly(aryl ether ketone) (S‐PAEK) block copolymers of high molecular weights was prepared by direct nucleophilic polymerization of hydroquinone with sodium 5,5′‐carbonylbis(2‐fluorobenzene sulfonate) ( 1 ) and PEKK oligomer ( 2 ). Varying the ratio of 1 to 2 used in polymerization can be used to control the degree of polymer sulfonation, which correspondingly affects the polymer solubility in solvents. Increasing content of 1 in the copolymers, slightly decreases their thermal stability which is nevertheless thermally stable up to 400 °C. Two Tg values, or one broad Tg, were observed in the DSC measurements of the block copolymers, indicating the existence of phase separation, which was further proved by phase‐separated morphologies as shown in atomic force microscopy images. © 2001 Society of Chemical Industry  相似文献   

12.
A series of thio‐containing poly(ether ether ketone) (PEESK) polymers was synthesized by the introduction of thio groups from 4,4′ thiodiphenol (TDP) into the poly(ether ether ketone) (PEEK) structure via reaction between the phenol and aromatic fluoride groups. The effect of the thio groups on the properties of the PEESK materials was investigated. Differential scanning calorimetry (DSC) analysis and X‐ray diffraction (XRD) patterns show a depression in the crystallinity of the PEESKs with incorporation of the content of thio groups in the backbones. The crystalline structure was identified as an orthorhombic structure with lattice constants of a = 7.52 Å, b = 5.86 Å and c = 10.24 Å for all crystallizable PEESKs. The crystalline structures of the thio‐containing PEEK polymers were the same as that of the neat PEEK, which means the thio‐containing block in the whole thio‐containing PEEK molecule is almost excluded from the crystalline structure and the crystals are completely formed by ‘non‐thio’ blocks only. Due to the glass transition temperature (Tg) and melting temperature (Tm) depression with increase in the TDP content in the reaction system, the processability of the resultant thio‐containing PEEKs could be effectively improved. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
New monomers, 4,4′‐bis(4‐phenoxybenzoyl)diphenyl (BPOBDP) and N,N′‐bis(4‐phenoxybenzoyl)?4,4′‐diaminodiphenyl ether (BPBDAE), were conveniently synthesized via simple synthetic procedures from readily available materials. Novel copolymers of poly(ether ketone diphenyl ketone ether ketone ketone) (PEKDKEKK) and poly(ether amide ether amide ether ketone ketone) (PEAEAEKK) were synthesized by electrophilic Friedel‐Crafts solution copolycondensation of isophthaloyl chloride (IPC) with a mixture of BPOBDP and BPBDAE, over a wide range of BPOBDP/BPBDAE molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The copolymers obtained were characterized by different physico‐chemical techniques. The copolymers with 10–40 mol% BPBDAE are semicrystalline and had remarkably increased Tgs over commercially available PEEK and PEKK due to the incorporation of amide and diphenyl linkages in the main chains. The copolymers IV and V with 30–40 mol% BPBDAE had not only high Tgs of 185–188°C, but also moderate Tms of 326–330°C, having good potential for the melt processing. The copolymers IV and V had tensile strengths of 101.7–102.3 MPa, Young's moduli of 2.19–2.42 GPa, and elongations at break of 13.2–16.6% and exhibited high thermal stability and excellent resistance to organic solvents. POLYM. ENG. SCI., 54:1757–1764, 2014. © 2013 Society of Plastics Engineers  相似文献   

14.
A new monomer, 1,4‐bis(4‐phenoxybenzoyl)naphthalene (BPOBN), was conveniently synthesized via a simple synthetic procedure from readily available materials. A series of novel copolymers of poly(ether ketone ether ketone ketone) and poly(ether ketone ketone ether ketone ketone) containing 1,4‐naphthylene moieties were prepared by the Friedel‐Crafts acylation solution copolycondensation of terephthaloyl chloride (TPC) with a mixture of BPOBN and 4,4′‐diphenoxybenzophenone (DPOBPN), over a wide range of BPOBN/DPOBPN molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone in 1,2‐dichloroethane. The copolymers with 10–40% BPOBN are semicrystalline and had remarkably increased Tgs over the conventional PEEK and PEKK due to the incorporation of 1,4‐naphthylene moieties in the main chains. The copolymers with 30–40 mol% BPOBN had not only high Tgs of 176–177°C, but also moderate Tms of 332–338°C, which are suitable for the melt processing. These polymers had tensile strengths of 101.5–104.7 MPa, Young's moduli of 2.49–2.65 GPa, and elongations at break of 13.3–15.7% and exhibited high thermal stability and excellent resistance to organic solvents. POLYM. ENG. SCI., 56:566–572, 2016. © 2016 Society of Plastics Engineers  相似文献   

15.
The synthesis of novel poly(ether ether ketone ketone)s containing a lateral group via the random copolymerization of 4,4′‐biphenol, tert‐butylhydroquinone and 1,4‐bis(p‐fluorobenzoyl)benzene is described. The copolymers were characterized by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and polarized optical microscopy (POM) observation. The results showed that the thermotropic liquid‐crystalline properties were achieved in the copolymers containing 30 mol% and 50 mol% tert‐butylhydroquinone, which have relatively lower melting temperatures due to the copolymerization effect. Both the crystalline–liquid‐crystalline transition (Tm) and the liquid‐crystalline–isotropic phase transition (Ti) were observable in the DSC thermograms, while the biphenol‐based poly(aryl ether ketone) has only one melting transition. The hydroquinone‐based polymer was shown to be amorphous. Thermogravimetric analysis (TGA) results showed that these copolymers are all high‐temperature resistant with higher glass transition temperature between 147 and 149 °C, and higher decomposition temperature Td in the range 480–520 °C. © 2000 Society of Chemical Industry  相似文献   

16.
The physical form of polymers is often important for carrying out subsequent processing operations. For example, fine powders are desirable for molding and sintering compounds because they consolidate to produce void free components. The objective of this work is to prepare fine polymeric particulates suitable for processing into fiber reinforced polymer matrix composites. Micron size particles of poly(ether ether ketone) (PEEK) were prepared by rapidly quenching solutions of these materials. PEEK pellets were dissolved at temperatures near the PEEK melting point in a mixture of terphenyls and quaterphenyls; then the solution was quenched to a temperature between the Tg and Tm (≈ 225°C) by adding a room temperature eutectic mixture of diphenyl ether and biphenyl. A supersaturated, metastable solution of PEEK resulted, causing rapid nucleation. Fine PEEK particles rapidly crystallized from this solution. The average particle size was measured using transmission electron microscopy, atomic force microscopy, and by light scattering of aqueous suspensions which had been fractionated by centrifugation. The average particle diameter was about 0.6 μm. Three dimensional photomicrographs obtained via atomic force microscopy showed some aggregates in the suspensions. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1571–1578, 1997  相似文献   

17.
A series of novel poly(phthalazinone ether sulfone ketone)s was synthesized from bis(4-fluorophenyl) ketone, bis(4-chlorophenyl)sulfone, and 4-(4-hydroxybenzyl)-2,3-phthalazin-1-one through nucleophilic substitution polycondensation. The synthesized polymers exhibited surprisingly high glass transition temperatures and had excellent thermooxidative properties. The melt viscosities of these synthesized polymers are generally too high to be processed by common processing methods because of their very high glass transition temperatures and amorphous microstructure. An attempt was made to reduce their melt viscosities by solution blending the synthesized polymer with two kinds of oligomers: low molecular weight poly(phthalazinone ether sulfone ketone) and commercial poly(ether sulfone). The results proved that the addition of the oligomers to the polymers led to a marked decrease in melt viscosities. Furthermore, no obvious changes were observed in the thermal and mechanical properties of these blends after oligomer additions. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1425–1432, 1997  相似文献   

18.
Positively charged quaternized poly(phthalazinone ether sulfone ketone) (QAPPESK) nanofiltration (NF) membranes were prepared from chloromethylated poly(phthalazinone ether sulfone ketone) by the dye/wet phase inversion method with N‐methyl‐2‐pyrrolidone (NMP) and N,N‐dimethylacetamide (DMAc) as solvents. The effects of the ratio of NMP to DMAc, the evaporation time, the evaporation temperature, and the coagulation temperature on membrane performance were evaluated by the orthogonal design method. The results showed that the optimal preparation conditions were an NMP/DMAc ratio of 2/8, an evaporation time of 5 min at 70°C, and a coagulation temperature lower than 5°C. The effects of the additive type and concentration on the QAPPESK NF membrane cross‐section morphology and performance were investigated in detail. Furthermore, QAPPESK NF membranes exhibited good thermal stability with stable membrane performance for 120 h at 60°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
A novel monomer, bis[4‐(4‐fluorobenzoyl)phenyl]phenylphosphine oxide, was synthesized through the reaction of bis(4‐chloroformylphenyl) phenyl phosphine oxide with fluorobenzene. Three poly(ether ether ketone ketone)s derived from bis[4‐(4‐fluorobenzoyl)phenyl]phenylphosphine oxide and different aromatic bisphenols were prepared by aromatic nucleophilic substitution reactions. The resulting polymers had inherent viscosities in the range of 0.55–0.73 dL/g. The structures of the poly(ether ether ketone ketone)s were characterized with Fourier transform infrared and 1H‐NMR. Thermal analysis indicated that the glass‐transition temperatures of the poly(ether ether ketone ketone)s were higher than 200°C, and the 5% weight loss temperatures in nitrogen were higher than 463°C. All the polymers showed excellent solubility in polar solvents such as N‐methyl‐2‐pyrrolidone, dimethylformamide, and dimethylacetamide and could also be dissolved in chlorinated methane. The polymers afforded transparent and flexible films by solvent casting. Organic phosphorous moieties also imparted good flame‐retardancy to the polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
A new monomer containing sulfone and imide linkages, bis{4-[4-(p-phenoxyphenylsulfonylphenoxy)benzoyl]-1,2-benzenedioyl}-N,N,N′,N′-4,4′-diaminodiphenyl ether (BPSPBDADPE), was prepared by the Friedel–Crafts reaction of bis(4-chloroformyl-1,2-benzenedioyl)-N,N,N′,N′-4,4′-diaminodiphenyl ether with 4,4′-diphenoxydiphenyl sulfone. Novel copolymers of poly(ether ketone ketone) and poly(ether ketone sulfone imide) were synthesized by electrophilic Friedel–Crafts solution copolycondensation of terephthaloyl chloride with a mixture of DPE and BPSPBDADPE. The polymers were characterized by different physico-chemical techniques. The polymers with 10–25?mol% BPSPBDADPE are semicrystalline and had increased T gs over commercially available PEEK and PEKK (70/30) due to the incorporation of sulfone and imide linkages in the main chains. The polymer IV with 25?mol% BPSPBDADPE had not only high T g of 194?°C but also moderate T m of 338?°C, having good potential for melt processing and exhibited high thermal stability and good resistance to common organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号