首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Highly selective, ordered microporous molecularly imprinted membranes (MIMs) for phenol were synthesized by breath figure (BF) method using styrene‐acrylonitrile copolymer (SAN) as the membrane matrix and molecularly imprinted polymer nanoparticles (nano‐MIPs) as the imprinted nanoparticles. The nano‐MIPs were synthesized by oil‐in‐water emulsion polymerization using 4‐vinyl pyridine (4‐VP), methyl methacrylate (MMA) or cinnamic acid (CA) as the functional monomer, respectively. The prepared nano‐MIPs were characterized by transmission electron microscope (TEM) and Raman, whereas MIMs were characterized by SEM, membrane flux, and selective adsorption experiments. Morphological analysis exhibited that the addition of nano‐MIPs improved the formation of ordered and well‐defined porous membrane morphology. Compared with MMA‐MIM and CA‐MIM, the 4‐VP‐MIM exhibited higher membrane flux, adsorption capacity, and stronger selective binding for phenol as well as excellent permeation selectivity for phenol. Moreover, the selective effect of 4‐VP‐MIM on phenol was strongly affected by the amount of 4‐VP imprinted nanoparticles (nano‐4‐VP‐MIPs). The experimental data revealed that the 4‐VP‐MIM containing 2.0 wt % of nano‐4‐VP‐MIPs exhibited the highest separation selectivity for the template phenol, whose selectivity coefficients for phenol relative to salicylic acid (SA) and p‐hydroxybenzoic acid (p‐HB) were 5.6770 and 5.5433, respectively, which was close to the predicted selectivity coefficient value. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42350.  相似文献   

2.
Molecularly imprinted latex membrane (MILM) is prepared by core‐shell emulsion technique in the presence of a template molecule (L ‐Tryptophan). A hard inward and soft outward microstructure latex particle is designed to obtain MILM with both flexibility and impact strength. Molecularly imprinted layer with high crosslinking degree is grafted on the surface of core‐shell latex particles. NaCl, glucose, urea, polyethylene glycol, Mw 300, etc., are added during the film‐forming process to produce porous microstructure in MILM. Fourier transform infrared spectroscopy (FTIR) and Scatchard analysis are used to investigate the interaction between L ‐Tryptophan and MILM and the binding ability of the resultant MILM, respectively. The functional binding and separation performances in aqueous medium towards template are carried out. The results reveal that the content and type of porogen and the shell composition have significant effects on adsorption capacity and separation ability. MILM with glucose as porogen shows high recognition towards the template with adsorption separation factor reaching 9.06. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Molecularly imprinting polymer technology is used to prepare a molecularly imprinted polymer (MIP) for the selective recognition of indole‐3‐carbinol (I3C), a chemopreventive and chemotherapeutic phytochemical associated with the anticancer activities of cruciferous vegetables. Prepolymerization study via nuclear magnetic resonance technique is done to choose the best functional monomer that establishes more interaction with the template. The prepared MIP is tested before in batch experiments and subsequently used as solid‐phase extraction sorbent for the selective detection of I3C from standard solutions. In order to verify the selectivity of the MIP, the binding of structurally related compounds, such as indole‐3‐acetonitrile, teophylline, and tryptophan, on the polymer is investigated. The experiments indicate that the MIP is highly selective for I3C with an association constant of Ka = (1.37 ± 0.07) × 103 M?1. Standard mixture solution loaded on MIP‐SPE cartridge give a recovery of 95% for I3C, while the other compounds are totally eluted during washing step. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40819.  相似文献   

4.
The multiple bulk copolymerization method, which was developed in our previous works, was further investigated with prometryn, tetracycline, and propranolol as templates for the preparation of molecularly imprinted polymer (MIP) coatings on silicon fibers for solid‐phase microextraction. The preparation conditions (e.g., the solvent, monomer, crosslinker, component proportions, polymerization time, and number of coating procedures) were investigated systemically in an effort to enhance the coating thickness, surface morphology, and reproducibility. The methodology was examined, and some common specialties were explored in the preparation of three MIP‐coated fibers. Even after the coating procedure was repeated 10 times, the prometryn, tetracycline, and propranolol MIP‐coated fibers were prepared reproducibly with coating‐thickness relative standard deviations of 2.6, 3.0, and 5.1%, respectively; they were highly homogeneous, and a compact morphological structure was obtained. The extraction capacities of prometryn, tetracycline, and propranolol with corresponding MIP‐coated fibers were approximately 10.4, 3.9, and 3.3 times as much as those with the nonimprinted polymer (NIP)‐coated fibers, respectively, and the selectivity factors of prometryn, tetracycline, and propranolol MIP coatings for the template molecules and structural analogues were 2.2–10.4, 2.2–3.9, and 1.3–3.3, respectively, in comparison with the corresponding NIP coatings. In comparison with commercial polydimethylsiloxane/divinylbenzene coatings that were approximately 3 times thicker, the extracted amounts of prometryn, tetracycline, and propranolol were 4.2, 12.3, and 7.7 times higher with prometryn, tetracycline, and propranolol MIP coatings, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Through the use of thermal polymerization, poly(vinylidene fluoride) (PVDF) hollow‐fiber membranes modified by a thin layer of molecularly imprinted polymers (MIPs) were developed for the selective separation of levofloxacin. To demonstrate the changes induced by thermal polymerization, PVDF hollow‐fiber membranes with different modification degrees by repeated polymerization were weighed. The total weight of the imprinted membranes increased by 14 μg/cm2 after a five‐cycle polymerization. An increase in the membrane weight indicated the deposition of an MIP layer on the external surface of PVDF hollow‐fiber membranes during each polymerization cycle, which was also characterized by scanning electron microscopy. MIP membranes with different degrees of surface modification provided highly selective binding of levofloxacin. Both hollow‐fiber MIP membranes and nonimprinted membranes showed enhanced adsorption of levofloxacin and ofloxacin gradually with an increase in the modification degrees of PVDF hollow‐fiber membranes to a maximum value followed by a decrease. These results indicate that thermal polymerization indeed produces an MIP layer on the external surface of PVDF hollow‐fiber membranes and that it is feasible to control the permeability by repeated polymerization cycles. Different solvent systems in the permeation experiments were used to understand the hydrophobic interaction as one of the results of the binding specificity of MIP membranes. Selective separation was obtained by multisite binding to the template via ionic, hydrogen‐bond, and hydrophobic interactions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Highly selective molecularly imprinted polymers (MIPs) that absorb sulfonamides (SAs) are prepared using two types of SAs as mixed templates, 2‐vinylpyridine as the functional monomer and ethylene glycol dimethacrylate as the crosslinker. The optimum combination of the mixed templates, their adsorption effect and the imprinting mechanism are evaluated based on SPE recoveries of a family of analytes, equilibrium binding, BET surface area analysis and UV. The results indicate that the mixed templates not only optimize the cavities of the MIPs but also improve the MIPs selectivity and adsorption capacity for the target analytes in aqueous solution. Therefore, MIPs are used for the quantitative analysis of SAs in fish farming water using off‐line SPE coupled to HPLC/DAD. The recovery and RSD were 84.16–101.19 and 1.98–7.10%, respectively. Four SAs analytes were detected in four types of water samples in the range of 8.49–74.60 ng L?1. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41491.  相似文献   

7.
Thin‐layer molecularly imprinted polymer (MIP) composite membranes for selective binding of monocrotophos (MCP) pesticide from aqueous solutions were developed. The procedure was based on commercially available membrane modules that were rinsed with prepolymerization imprinting mixtures. After the in situ polymerization and generation of MIP films on the membranes within the modules, the membranes were evaluated in terms of affinity toward the target molecule MCP. MIP membranes with different porogens and different monomers on Nylon‐6 membranes were prepared. It was shown that MIP membranes synthesized with methacrylic acid as monomer and toluene as porogens on the Nylon‐6 membranes provided a highly selective binding of MCP from aqueous solutions under the optimized elution conditions. With the novel surface modification technique, the low nonspecific binding properties of the microfiltration membrane could successfully be combined with the receptor properties of molecular imprints, yielding substance‐specific MIP composite membranes. The high affinity of these synthetic membranes to MCP pesticide together with their straightforward and inexpensive preparation could be applied in a fast preconcertration step, solid‐phase extraction, by a simple microfitration for the determination of MCP in water. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4468–4473, 2006  相似文献   

8.
In the current work, synthetic polyamide nylon fibers were modified via the strategy of surface molecular imprinting to develop enantio‐selective adsorbent fabrics for chiral recognition of d ‐phenyllactic acid (d‐ PhLA). The nylon fibers were first modified by grafting of polyacrylamide and then the incorporated amide groups were converted into functional amino groups via treatment with NaOCl (Hofmann degradation). The amino‐functionalized nylon fibers (Ny‐NH2) were interacted with the targeted d‐ PhLA enantiomer before crosslinking the amino‐containing grafted chains with glutaraldehyde crosslinker followed by leashing the template d‐ PhLA out of the formed surface polymeric matrix by lowering the pH to 1 to finally produce the desired enantio‐selective adsorbent fibers DP‐Ny. Different instrumental methods such as elemental analysis, Fourier transform infrared spectroscopy, XRD and TGA were employed to examine all the synthetic procedures. SEM was also utilized to observe the morphological appearances of both native and modified nylon fibers. Moreover, the optimum extraction of d‐ PhLA was found to occur at pH 7. Isotherm studies of the prepared DP‐Ny fibers obeyed the common Langmuir linear equation with qm values 130 ± 2 and 75 ± 1 mg g?1 in the case of d‐ PhLA and l‐ PhLA, respectively. Furthermore, the enantiomeric resolution of (±)‐PhLA racemate was successfully carried out by a column technique with enantiomeric excess reaching approximately 78%. © 2019 Society of Chemical Industry  相似文献   

9.
Quercetin is an important compound of flavonoids. In this work, quercetin molecule surface‐imprinted material with high performance was prepared using a novel surface‐imprinting technique of “synchronously graft‐polymerizing and imprinting.” The modified micron‐sized silica gel particles containing amino groups were used as matrix, methacrylic acid (MAA) was used as functional monomer, and N,N′‐Methylenebisacrylamide (MBA) was used as crosslinker. In dimethyl formamide solution of quercetin, MAA molecules arranged automatically around the template quercetin molecule by right of hydrogen bonding interactions of two type, ordinary hydrogen bond and π‐type hydrogen bond. By initiating the surface‐initiating system of – , the graft/cross‐linking polymerization of MAA on SiO2 particles and the quercetin molecule surface‐imprinting were simultaneously carried out, forming quercetin molecule surface‐imprinted material MIP‐PMAA/SiO2. With another two flavonoids, rutin and genistein, as contrasting substances, the molecule recognition character of the quercetin molecule surface‐imprinted material MIP‐PMAA/SiO2 was investigated with batch and column methods. The experimental results show that the imprinted material MIP‐PMAA/SiO2 possesses special recognition selectivity and excellent binding affinity for quercetin molecule. The binding capacity of MIP‐PMAA/SiO2 for quercetin is 0.325 mmol/g, and its selectivity coefficients for quercetin relative to rutin and genistein are 7.69 and 4.40, respectively. The main conditions of imprinting process affect the property of MIP‐PMAA/SiO2 greatly, and the optimal molar ratio of monomer MAA to crosslinker MBA is 7 : 1 and appropriate molar ratio of monomer MAA to template quercetin is equal to 6 : 1. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41112.  相似文献   

10.
With global appeal to green and efficient utilization of energies, metal‐organic frameworks based mixed matrix membranes are standing out in applications such as gas and liquid separation because of the integration of size/shape selectivity of MOFs with processability and mechanical stability of polymers. In the present work, a novel MIL‐68(Al) (MIL = Material of Institute Lavoisier) based mixed matrix membrane (MMM) was developed by adding porous MIL‐68(Al) into Matrimid for the separation of CO2/CH4 mixture. The MIL‐68(Al)/Matrimid MMM displays a high CO2 permselectivity. For the separation of an equimolar CO2/CH4 mixture at 373 K and 1 bar, the CO2 permeability and the CO2/CH4 selectivity are 284.3 Barrer and 79.0, respectively, which far exceed the Robeson upper bound limit and those of the previously reported MMMs. Both the operation pressure and temperature have great influence to the separation performance of the MIL‐68(Al)/Matrimid MMM. Further, the MIL‐68(Al)/Matrimid MMM shows a high stability in the long‐term separation of CO2/CH4. These properties recommend the MIL‐68(Al)/Matrimid MMM as a promising candidate for the purification of natural gases. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43485.  相似文献   

11.
Highly selective cellulose acetate (CA) blend imprinted membranes for salicylic acid (SA) removal were synthesized by phase inversion technique with chitosan as a functional polymer and chitosan‐wrapped multi‐walled carbon nanotubes (CHI‐wrapped MWCNTs) as the additives. The surface and cross‐sectional morphology of membranes were strongly affected by the amount of CHI‐wrapped MWCNTs. As compared to M1‐MIM, M2‐MIM, and M4‐MIM, the M3‐MIM with 2.0 wt % CHI‐wrapped MWCNTs showed higher membrane flux, faster kinetic, binding capacity and better selectivity for SA. The experimental data of adsorption kinetic were well fitted to the pseudo‐second‐order kinetic model by multiple regression analysis. The M3‐MIM had the maximum adsorption capacity for SA. The selectivity coefficients of SA to p‐hydroxybenzoic acid (p‐HB) and acetylsalicylic acid (ASA) over M3‐MIM were 6.3090 and 6.0019, respectively, showing that M3‐MIM had excellent binding affinity and selectivity for separation of SA from SA‐contained aqueous solution. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42654.  相似文献   

12.
Ni2+‐imprinted monolithic column was prepared for the removal of nickel ions from aqueous solutions. N‐Methacryloyl‐L ‐histidine was used as a complexing monomer for Ni2+ ions in the preparation of the Ni2+‐imprinted monolithic column. The Ni2+‐imprinted poly(hydroxyethyl methacrylate‐N‐methacryloyl‐L ‐histidine) (PHEMAH) monolithic column was synthesized by bulk polymerization. The template ion (Ni2+) was removed with a 4‐(2‐pyridylazo) resorcinol (PAR):NH3? NH4Cl solution. The water‐uptake ratio of the PHEMAH–Ni2+ monolith increased compared with PHEMAH because of the formation of nickel‐ion cavities in the polymer structure. The adsorption of Ni2+ ions on both the PHEMAH–Ni2+ and PHEMAH monoliths were studied. The maximum adsorption capacity was 0.211 mg/g for the PHEMAH–Ni2+ monolith. Fe3+, Cu2+, and Zn2+ ions were used as competitive species in the selectivity experiments. The PHEMAH–Ni2+ monolithic column was 268.8, 25.5, and 10.4 times more selective than the PHEMAH monolithic column for the Zn2+, Cu2+, and Fe3+ ions, respectively. The PHEMAH–Ni2+ monolithic column could be used repeatedly without a decrease in the Ni2+ adsorption capacity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Skinless nylon 12 microporous membranes were prepared via a cold-solvent-induced phase-separation process from a binary nylon 12–formic acid system. Through the incorporation of an aging step, polymer nucleation in the dope was enhanced, and the formed membranes exhibited a special particulate structure composed of interlocked sticklike or sheaflike crystallites, which coexisted with continuous microporosity. The crystallite size was affected by the polymer concentration in the dope and the aging time; for example, aging alone allowed for the reduction of the particle diameter from about 20 μm to about 1 μm. Because the membranes were skinless and hydrophobic (contact angles ≈ 105°), they were potentially appropriate for desalination via membrane distillation (MDi). For the case of desalting 3.5% NaCl(aq) by means of direct-contact MDi, very high rejection ratios (∼99.6%) were achieved for all membranes under the operation conditions (temperature of the hot stream = 50°C, temperature of the cold stream = 20°C, and circulation rate = 0.7 L/min), whereas the highest permeation flux obtainable was 5.15 L/m2 h. The membranes were strong, with tensile strengths ranging from 4.7 to 6.3 N/mm2. Finally, we discovered a shift from α to γ structure as the dope polymer increased, whereas the crystallinity was about 27% in all cases. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47036.  相似文献   

14.
A dummy molecularly imprinted polymers (DMIP) for phenol was synthesized by a thermal polymerization method with acrylamide as the functional monomer, ethylene dimethacrylate as the crosslinker, 2,2‐azobisisobutyronitrile as the free‐radical initiator, acetonitrile as the porogenic solvent, and sulfadiazine, a phenol analogue, as the template. In comparison to other adsorbents, the synthesized DMIP showed a higher capacity and rate of adsorption. The adsorption amount of the DMIP adsorbents for phenol reached 6.09 ± 0.15 mg/g, and the adsorption rate of the DMIP was about 0.406 ± 0.01 mg g?1·min?1. The results indicate that the Freundlich model fit the adsorption model of DMIP for phenol. The adsorption model of DMIP for phenol was multilayer adsorption. This showed that the DMIP synthesized by bulk polymerization could be used as a novel adsorbent for the removal of phenol from contaminated water. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Inspired from the highly bioadhesive performance of mussel protein, a simple, yet efficient synthetic method for efficiently imprinting of Artemisinin (Ars) was developed to prepare the bio‐inspired molecularly imprinted membranes (MIMs) via atom transfer radical polymerization (ATRP). In this work, attributed to the unique properties of polydopamine (pDA) modified layers and ATRP technology, the uniform recognition sites for efficiently selective extraction of the Ars with high stability could be obtained on the MIMs surfaces. In addition, the maximum adsorption capacity of the MIMs is 158.85 mg g?1 by the Langmuir isotherm model, which is remarkable higher than NIMs. Additionally, because of the formation of the uniform specific recognition cavities on membrane surfaces, the as‐prepared MIMs exhibited a rapid adsorption dynamics and well‐fitted for the pseudo‐second‐order rate equation, also, possessed an excellent per‐selectivity performance (βartemether/Ars values is 0.18) of template molecule, which clearly demonstrated the potential value of this method in the selective separation and purification of Ars. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43405.  相似文献   

16.
Molecularly imprinted polymers are being proposed for the development of novel biorecognition elements for active components. In this study, an imprinted chitosan coated silica nanoparticles (I‐CS@SiO2) polymer was prepared by a simple procedure, in which, naringin (NG) with antioxidant activity, acted as a template, silica as a matrix and CS as a functional polymer. The binding properties were discussed by the equilibrium binding experiment method. Experiments show that the adsorption characteristics of I‐CS@SiO2 are better than that of nonimprinted polymer. It exhibited high selectivity for NG when compared with the nonimprinted polymer, with an imprinting factor α of 1.74. Scatchard analysis of the I‐CS@SiO2 indicated that there was a class of binding sites during the I‐CS@SiO2 recognizing NG: The dissociation constant of KD is 0.016 mmol L?1, the maximum apparent binding capacity of Bmax is 6.56 μmol g?1. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40491.  相似文献   

17.
The efficient separation and recovery of oil from water‐in‐oil emulsion poses a great challenge because of the rapid development of the petrochemical industry throughout the world. In this study, a facile method to develop a ZIF‐8 functionalized hierarchical micronanofiber membrane for high‐efficiency oil/water separation was investigated. The electrospun PVDF/ZnO membrane was made, on which ZIF‐8 crystal seeds were then created with the revitalizing step and expanded in the growth step, and finally functionalized hierarchical micronanofiber PVDF‐g‐ZIF‐8 membrane was obtained. Results showed that oleophilic ZIF‐8 crystals on the surface of PVDF membrane dramatically increased the wettability of oil and tuned PVDF membrane from olephobicity to oleophilicity. The hydrophobic/lipophilic PVDF‐g‐ZIF‐8 membrane with a water contact angle up to 158° and a toluene contact angle down to 0° provides its separation efficiency for water‐in‐oil emulsion of 92.93% in an environmentally friendly and energy‐saving manner. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46462.  相似文献   

18.
A method based on molecular imprinting technique was presented for preparing protein‐imprinted agarose gel membrane (AGM) under moderate conditions, and the influencing factors such as molecular weights and modified chemical groups on the adsorption ability and selectivity of AGMs were investigated. The agaroses used for AGMs were prepared through ultrasonic degradation, oxidation degradation, gel‐melting method, and sulfation, respectively. Bovine serum albumin (BSA) and hemoglobin were selectively recognized on AGMs. Results showed that the molecular weight was the most crucial influencing factor for the protein recognition ability of AGMs. The lower and upper limit of molecular weight was 100 and 130 kDa, respectively, where the AGMs could maintain both good mechanical strength and high recognition ability, with K value around 4.0. The enhancement of ionic strength could make the imprinting effect disappeared even when the concentration of salt was as low as 2 mmol/L. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40323.  相似文献   

19.
Water‐compatible molecularly imprinted polymers (MIPs) for caffeine were synthesized in aqueous medium with a new functional monomer, 1‐(α‐methyl acrylate)‐3‐methylimidazolium bromide (1‐MA‐3MI‐Br), which had π–π and hydrogen‐bonding interactions. Caffeine‐imprinted polymers were prepared in suspension polymerization with 1‐MA‐3MI‐Br and methacrylic acid (MAA), which only had hydrogen bonding, as a functional monomer. For the specific binding characteristics of the new functional monomer 1‐MA‐3MI‐Br, the adsorption capacity and relative separation factor (β) of MIPs for caffeine were significantly enhanced. The maximum adsorption capacities of 1‐MA‐3MI‐Br–MIP and MAA–MIP imprinted microspheres for caffeine were 53.80 and 28.90 μmol/g, respectively. Moreover, the relative separation factors were measured by comparison of the separation characteristics under competitive adsorption conditions. The results showed that the β of MAA–MIP for caffeine relative to theophylline was only 1.65; this showed a very poor recognition selectivity for caffeine, but β of 1‐MA‐3MI‐Br–MIP for caffeine with respect to theophylline was remarkably enhanced to 3.19; this showed an excellent recognition selectivity and binding affinity toward caffeine molecules in an aqueous environment. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
In this work, magnetic molecularly imprinted polymers (MMIPs) were used as novel adsorbents for selective adsorption of 3‐methylindole from model oil. The MMIPs were synthesized by precipitation polymerization and surface molecularly imprinted technique, using Fe3O4 nanoparticles as magnetically susceptible component, methylacrylic acid as dressing agent and functional monomer, ethylene glycol dimethacrylate as crosslinker, and 3‐methylindole as template molecule. The MMIPs were characterized by Fourier‐transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer, and thermogravimetric analyzer, respectively. The adsorption performances of MMIPs were investigated by batch adsorption experiments in terms of kinetics, isotherms, and selective recognition adsorption, respectively. The results indicate that MMIPs have high recognition ability and fast binding kinetics for 3‐methylindole. Meanwhile, the adsorption equilibrium time was about 2 h and the equilibrium adsorption amount was ~38 mg g?1 at 298 K. The heterogeneous MMIPs were modeled with pseudo‐second‐order and Langmuir isotherm equation. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2859–2866, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号