首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, cetyltrimethyl ammonium bromide and methacryloyloxyethyhrimethyl ammonium chloride were used to prepare organophilic montmorillonite (O‐MMT). Then, polypropylene (PP)–clay nanocomposites were prepared by the in situ grafting polymerization of styrene (St)‐containing O‐MMT onto PP with tert‐butyl perbenzoate as an initiator in the solid state. Fourier transform infrared spectroscopy, gel permeation chromatography, transmission electron microscopy, and X‐ray diffraction were applied to study the structure of the layered silicate and modified PP. The surfaces of the composites and, thus, the distribution of the clay in the PP matrix were characterized by scanning electron microscopy. The rheology and mechanical properties were studied and are discussed. According to the characterization results, OMMT and St were already grafted onto the PP main chain. Also, the intercalated structure of montmorillonite could be stabilized, and a stable exfoliated structure could be attained. Namely, intercalated PP/OMMT nanocomposites were obtained. The rheological results clearly show that these PP/OMMT nanocomposites had long‐chain‐branched structures. The peroxide modification of PP had minor effects on the tensile and bending strengths of the modified PP; however, this modification resulted in a significant reduction in the impact strength. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
A different series of new polystyrene–clay nanocomposites have been prepared by grafting polymerization of styrene with vinyl‐montmorillonite (MMT) clay. The synthesis was achieved through two steps. The first step is the modification of clay with the vinyl monomers, such as N,N‐dimethyl‐n‐octadecyl‐4‐vinylbenzyl‐ammonium chloride, n‐octadecyl‐4‐vinylbenzyl‐ammonium chloride, triphenyl‐4‐vinylbenzyl‐phosphonium chloride, and tri‐n‐butyl‐4‐vinylbenzyl‐phosphonium chloride. The second step is the polymerization of styrene with different ratios of vinyl‐MMT clay. The materials produced were characterized by different physical and chemical methods: (1) IR spectra, confirming the intercalation of the vinyl‐cation within the clay interlayers; (2) thermogravimetric analysis (TGA), showing higher thermal stability for PS–nanocomposites than polystyrene (PS) and higher thermal stability of nanocomposites with of phosphonium moieties than nanocomposites with ammonium moieties; (3) swelling measurements in different organic solvents, showing that the swelling degree in hydrophobic solvents increases as the clay ratio decreases; (4) X‐ray diffraction (XRD), illustrating that the nanocomposites were exfoliated at up to a 25 wt % of organoclay content; and (5) scanning electron microscopy (SEM), showing a complete dispersion of PS into clay galleries. Also, transmission electron microscopy (TEM) showed nanosize spherical particles of ~ 150–400 nm appearing in the images. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3739–3750, 2007  相似文献   

3.
Sulfonated poly(ethylene terephthalate) (SPET)/montmorillonite nanocomposites were prepared by in situ intercalative polymerization. The microstructure, morphology, and properties of the nanocomposites were studied with wide‐angle X‐ray diffraction, transmission electron microscopy, atomic force microscopy, differential scanning calorimetry, and thermogravimetric analysis. The results indicated that an increase in the ? SO3Na content improved the dispersion of organically modified montmorillonite in the SPET ionomer matrix, and the dispersed layered silicates in the SPET matrix acted as nucleating agents in SPET crystallization processes and improved the thermal stability of SPET. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1150–1156, 2005  相似文献   

4.
Syndiotactic polystyrene (sPS)/montmorillonite nanocomposites were prepared via in situ intercalative coordination polymerization using mono‐(η5‐pentamethylcyclopenta‐ dienyl) tribenzyloxy titanium [Cp*Ti(OBz)3] complex activated by methylaluminoxanes (MAO) and triisobutylaluminum (TIBA). The influences of polymerization conditions, such as the weight ratio of montmorillonite and styrene, temperature, and monomer concentration, on the preparation of sPS/montmorillonite nanocomposites was investigated. The intercalation spacing in the nanocomposites, as well as the exfoliation of the montmorillonite interlayers, was characterized with wide angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM). The dispersibility of the nanoscale elements depended on the polymerization conditions and the surfactant treatment. The crystallizability and thermal properties of these nanocomposites were determined by differential scanning calorimetry (DSC) analysis and thermogravimetric analysis (TGA). Experimental results indicated that the degree of crystallinity of the sPS nanocomposite increased with increasing montmorillonite content and with higher Tg and thermal decomposition temperature than pure sPS. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1412–1417, 2005  相似文献   

5.
In this article, preparation of polypropylene/clay nanocomposites (PPCNC) via in situ polymerization is investigated. MgCl2/montmorillonite bisupported Ziegler‐Natta catalyst was used to prepare PPCNC samples. Montmorillonite (MMT) was used as an inert support and reinforcement agent. The nanostructure of the composites was characterized by X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. Obtained results showed that silica layers of the MMT in these PPCNC were intercalated, partially exfoliated, and uniformly dispersed in the polypropylene matrix. Thermogravimetric analysis showed good thermal stability for the prepared PPCNC. Differential scanning calorimetric was used to investigate both melting and crystallization temperatures, as well as the crystallinity of the PPCNC samples. Results of permeability analysis showed significant increase in barrier properties of PPCNC films. Effective parameters on molecular weight and flow ability of produced samples such as Al/Ti molar ratio and H2 concentration were also investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Combined effects of clay treatment and compatibilizer polymers on the structure and properties of polypropylene/clay nanocomposites were studied. Dynamic mechanical analysis was used to analyze comparatively the dynamic mechanical response of different nanocomposites prepared from polypropylene and montmorillonite‐rich bentonite, and to relate such response with the material microstructure. Two different bentonites were used: a purified Spanish natural bentonite was organophillized by means of 11‐undecyl‐ammonium ion and a commercial bentonite organophillized with dimethyl dehydrogenated tallow ammonium ion. Three different polar copolymers were employed as compatibilizer agents in some of the formulations: maleic anhydride‐grafted polypropylene, maleic anhydride‐grafted poly(styrene‐co‐ethylenebutylene‐co‐styrene), and poly(ethylene terephthalate‐co‐isophthalate) (PET). To ascertain the microstructure characteristics in the nanocomposites, wide angle X‐ray diffraction, transmission electron microscopy, and differential scanning calorimetry techniques were used. The nanocomposites containing both bentonite organophillized with 11‐undecyl‐ammonium ion and PET, and maleated PP as compatibilizer system, were found to have the highest storage modulus and the smallest loss factor values, which was mainly due to the better clay platelets dispersion. The dynamic mechanical response of nanocomposites prepared with bentonite organophillized with dimethyl dehydrogenated tallow ammonium ion and maleated SEBS was strongly affected by the presence of this compatibilizer. The temperature of PP and α, β, and γ relaxations strongly depended on the interactions between the different phases in the nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1213–1223, 2006  相似文献   

7.
A dimethyl dioctadecyl ammonium chloride modified organic montmorillonite (OMMT‐I.44P)/poly(vinyl chloride) (PVC) nanocomposite and anionic‐surfactant‐modified lanthanum organic montmorillonite (La‐OMMT)/PVC nanocomposites (with three different anionic surfactants for the La‐OMMTs) were prepared via melt‐intercalation technology. The effects of the La‐OMMTs and OMMT‐I.44P on the mechanical properties, flame retardancy, and smoke suppression of PVC were studied. X‐ray diffraction characterization showed that the La‐OMMTs were exfoliated in the PVC matrix. The mechanical properties of the nanocomposites were enhanced by the incorporation of the La‐OMMTs. Cone calorimetry and gas chromatography–mass spectrometry analyses indicated that the incorporation of the La‐OMMTs enhanced the flame retardancy and smoke suppression of the PVC nanocomposites. Scanning electron microscopy photos further showed that the residual char surfaces of La‐OMMT/PVC were all intact and, thus, provided better barriers to energy and smoke transport. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43951.  相似文献   

8.
Organophilic montmorillonite was prepared using ion‐exchange method between sodium ions in clay layers and stearyltrimethyl ammonium chloride in the various solvents, including deionized water, ethanol, acetone, and toluene. The montmorillonite has the largest d001 spacing, as determined by X‐ray diffraction in toluene, than the other solvents considered. Ethanol can completely wash out the overexchanged stearyltrimethyl ammonium chloride among layers of montmorillonite. However, deionized water is the preferred ion‐exchange solvent. The thermal stability of organophilic montmorillonite was investigated by high‐resolution thermogravimetric analysis (TGA). Polystyrene–montmorillonite nanocomposites were obtained by suspension free radical polymerization of styrene in the dispersed organophilic montmorillonite. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that montmorillonite had been exfoliated. 5.0 wt % of clay in the synthesized nanocomposite was found to be the optimum content that improved both thermal and mechanical properties over those of pure polystyrene under the experimental conditions applied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 101–109, 2004  相似文献   

9.
Vinylester resin‐clay hybrids were prepared by the mixing different types of organically‐modified montmorillonite (OMMT) with vinylester resin (VER) prepolymer, followed by thermal polymerization. VER prepolymer was synthesized from the reaction of diglycidylether of bisphenol‐A (DGEBA) with acrylic acid. Various types of organic ammonium salts have been used as intercalating agents for montmorillonite, including N,N‐dimethyl‐N‐(4‐vinylbenzyl)stearyl ammonium chloride (VSA), N‐allyl‐N,N‐dimethyl‐stearyl ammonium chloride (ASA) and N,N‐dimethyl‐stearyl ammonium chloride (SA). The dispersion of OMMT into VER matrix was studied by XRD, which indicates the dependence of the morphology mainly on the OMMT content. UV–vis spectra of the hybrids were used to give a quantitative value of the effect of OMMT content on the transparency of VER/OMMT hybrid films. Also, the Vickers test has been performed to study the effect of OMMT content on the surface hardness of the hybrid films. In addition, the thermal properties of the hybrids have been characterized by measuring the softening points and thermogravimetric analyses of the hybrids in comparison with the pure resin. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The polymerizable cationic surfactant, vinylbenzyldimethylethanolammouium chloride (VBDEAC), was synthesized to functionalize montmorillonite (MMT) clay and used to prepare exfoliated polystyrene–clay nanocomposites. The organophilic MMT was prepared by Na+ exchanged montmorillonite and ammonium cations of the VBDEAC in an aqueous medium. Polystyrene–clay nanocomposites were prepared by free‐radical polymerization of the styrene containing intercalated organophilic MMT. Dispersion of the intercalated montmorillonite in the polystyrene matrix determined by X‐ray diffraction reveals that the basal spacing is higher than 17.6 nm. These nanocomposites were characterized by differential scanning calorimetry (DSC), transmission electron micrograph (TEM), thermal gravimetric analysis (TGA), and mechanical properties. The exfoliated nanocomposites have higher thermal stability and better mechanical properties than the pure polystyrene. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1370–1377, 2002  相似文献   

11.
Polypropylene–clay nanocomposites were prepared by a solution technique and a subsequent melt‐mixing process. A titanate coupling agent was used to improve the compatibility of the nanoclay particles with the polypropylene. The dispersion of the nanoclay particles in polypropylene was studied with X‐ray diffraction (XRD) and transmission electron microscopy (TEM). An increased d‐spacing value of the clay particles in the nanocomposites was observed, and it was compared with the values of as‐mined (pristine) and as‐received (organophilic) clay particles. The number of intercalated layers in a single clay crystallite was determined to be 4, and the number was confirmed with XRD data and TEM images. On the basis of the Daumas–Herold model (which is widely used for graphite intercalation compounds), the stage 2 and stage 3 structures of montmorillonite particles in polypropylene were recommended. A study on the stage structure suggested a way of determining the presence of polymer molecules in the clay galleries. The results confirmed the existence of single‐layered platelets with improved dispersion in polypropylene. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 218–226, 2005  相似文献   

12.
Clay containing polypropylene (PP) nanocomposites were prepared by direct melt mixing in a twin screw extruder using different types of organo‐modified montmorillonite (Cloisite 15 and Cloisite 20) and two masterbatch products, one based on pre‐exfoliated clays (Nanofil SE 3000) and another one based on clay–polyolefin resin (Nanomax‐PP). Maleic anhydride‐grafted polypropylene (PP‐g‐MA) was used as a coupling agent to improve the dispersability of organo‐modified clays. The effect of clay type and clay–masterbatch product on the clay exfoliation and nanocomposite properties was investigated. The effect of PP‐g‐MA concentration was also considered. Composite morphologies were characterized by X‐ray diffraction (XRD), field emission gun scanning electron microscopy (FEG‐SEM), and transmission electron microscopy (TEM). The degree of dispersion of organo‐modified clay increased with the PP‐g‐MA content. The thermal and mechanical properties were not affected by organo‐modified clay type, although the masterbatch products did have a significant influence on thermal and mechanical properties of nanocomposites. Intercalation/exfoliation was not achieved in the Nanofil SE 3000 composite. This masterbatch product has intercalants, whose initial decomposition temperature is lower than the processing temperature (T ~ 180°C), indicating that their stability decreased during the process. The Nanomax‐PP composite showed higher thermal and flexural properties than pure PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Polyaniline (PANI)–organoclay/Epoxy (EP) nanocomposites were prepared. PANI–organoclay nanocomposites were used as curing agent for EP. Organoclay was prepared by an ion exchange process between sodium cations in MMT and NH3+ groups in polyoxypropylene (D230). PANI–organoclay nanocomposite was synthesized by in situ polymerization of aniline in (14 wt%) organoclay. Infrared spectra and differential scanning calorimetry confirm the curing of EP. The absence of d001 diffraction band of organoclay in the nanocomposites was observed by X‐ray diffraction. The structure argument was further supported by scanning electron microscopy and transmission electron microscopy. Electrical conductivity of the nanocomposites within the range 2.1 × 10−7–3.2 × 10−7 S/cm depending on the concentration of the PANI/D230‐MMT. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

14.
Oil‐absorptive polymeric nanocomposites were prepared through the melt blending of soft oleophilic ethylene–propylene–diene monomer and stearyl acrylate as a hydrophobic monomer in the absence and presence of different loadings of untreated and oleophilized laponites with quaternary ammonium salts of n‐alkylamines of different chain lengths (C10, C12, and C16) with dicumyl peroxide as a vulcanizing agent. The samples were then vulcanized at 152°C according to the determined rheometric characteristics to produce nanocomposite vulcanizates of an exfoliated type with limited cavities as revealed by X‐ray diffraction and scanning electron microscopy. The produced vulcanizates were evaluated as oil‐absorptive polymeric networks and proved to be efficient oil sorbents of moderate activity. The oil absorptivity was examined with respect to the stearyl acrylate grafting, the types of oleophilizing agents of clay in comparison with the bare clay, and the clay loading and crosslink density. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Poly(butyl acrylate‐co‐methyl methacrylate)‐montmorillonite (MMT) waterborne nanocomposites were successfully synthesized by semibatch emulsion polymerization. The syntheses of the nanocomposites were performed in presence of sodium montmorillonite (Na‐MMT) and organically modified montmorillonite (O‐MMT). O‐MMT was used directly after the modification of Na‐MMT with dimethyl dioctadecyl ammonium chloride. Both Na‐MMT and O‐MMT were sonified to obtain nanocomposites with 47 wt % solids and 3 wt % Na‐MMT or O‐MMT content. Average particle sizes of Na‐MMT nanocomposites were measured as 110–150 nm while O‐MMT nanocomposites were measured as 200–350 nm. Both Na‐MMT and O‐MMT increased thermal, mechanical, and barrier properties (water vapor and oxygen permeability) of the pristine copolymer explicitly. X‐ray diffraction and transmission electron microscope studies show that exfoliated morphology was obtained. The gloss values of O‐MMT nanocomposites were found to be higher than that of the pristine copolymer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42373.  相似文献   

16.
Preparation of polypropylene/mica nanocomposites via in situ polymerization is investigated. The nanocomposites were successfully synthesized using a Ziegler‐Natta catalyst based on MgCl2/modified mica/TiCl4. Muscovite mica was organically modified with quaternary ammonium salt, and with triethylaluminum. The treatment with triethylaluminum increased the disorder in the stacking of clay layers, producing a more active catalyst for propylene polymerization, although the mica containing catalysts had lower activity than the standard one prepared without clay. The nanostructure of the composites was characterized by X‐ray diffraction. The results showed that part of the mica layers were exfoliated in the polymer matrix, although tactoids were still present. Small‐angle X‐ray scattering analysis was used to determine how mica and its concentration influence the size of the polymer nanocrystals. Differential scanning calorimetry was used to investigate both melting and crystallization temperatures, as well as the crystallinity of the nanocomposite samples. Thermogravimetric analysis showed that polypropylene/mica nanocomposites presented much higher thermal stability than the polypropylene without mica, which means that mica had a barrier effect against heat. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45587.  相似文献   

17.
Two types of modified montmorillonite (MMT) were achieved using octadecylamine as the modifying agent by the methods of dry process and wet route. Polypropylene (PP)/MMT nanocomposites were prepared using the melt mixing technique and employing maleic anhydride‐grafted polypropylene (PP‐MA) as the compatibilizer. The modification of montmorillonite was characterized by fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and scanning electron microscope (SEM). The effect of MMT modification and PP‐MA on the microstructure and properties of PP/MMT nanocomposites was investigated by SEM, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and polarizing microscopy. The results show that organic montmorillonite modified by wet process (WOMMT) has a large d‐spacing increment; whereas montmorillonite modified by dry process (DOMMT) shows little d‐spacing increment. Furthermore, the mechanical properties of composites incorporating WOMMT are better than that containing DOMMT. As a third component, the addition of PP‐MA benefits the formation of exfoliated structure and the dispersion of MMT in PP matrix, and hence, enhances the physical properties of the nanocomposite. With the presence of PP‐MA, the highly dispersed MMT increases the number of spherulite crystals, enhances the melting enthalpy, improves the thermal stability, and induces the desired tiny crazes more effectively. MMT increases the storage modulus (E′) and glass‐transition temperature (Tg) of PP because of the stiffness of MMT layers, but PP‐MA decreases them owing to its high melt flow index, both of which were in favor of improving the physical properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3952–3960, 2013  相似文献   

18.
Montmorillonite is a promising substitute for aluminum trihydroxide in flame‐retardant polypropylene/aluminum trihydroxide (PP/ATH) composites. Study was made of the partial substitution of organoclay for ATH in PP/ATH composites. The total concentration of filler was kept at 30 wt%. The composites were compatibilized with two types of compatibilizer: commercial maleic anhydride functionalized polypropylene (PP‐g‐MA) and hydroxyl‐functionalized polypropylene (PP‐co‐OH) prepared with metallocene catalyst. The effect of compatibilization on the morphology was studied by the transmission electron microscopy and the scanning electron microscopy. Mechanical properties were characterized by tensile and impact measurements, and flammability properties with a cone calorimeter. Addition of compatibilizer and stearic acid (SA) treatment of the ATH particles contributed to the dispersion of the fillers. Both compatibilizers produced organoclay with exfoliated structure and improved adhesion between the fillers and the matrix. Toughness improved and decomposition and flammability were reduced. POLYM. ENG. SCI. 45:1568–1575, 2005. © 2005 Society of Plastics Engineers  相似文献   

19.
Mesua ferrea L. seed oil based highly branched polyester and epoxy resins blends were prepared by mechanical mixing at different weight ratios. The best performing blend was used as the matrix for the preparation of nanocomposites with different dose levels of organophilic montmorillonite (OMMT) nanoclay. The prepared nanocomposites were characterized by X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. Data resulting from the mechanical and thermal studies of the blends and nanocomposites indicated improvements in the tensile strength and thermal stability to appreciable extents for the nanocomposites with OMMT loading. The nanocomposites were characterized as well‐dispersed, partially exfoliated structures with good interfacial interactions. From the X‐ray diffraction analysis, the absence of d001 reflections of the OMMT clay in the cured nanocomposites indicated the development of an exfoliated clay structure, which was confirmed by transmission electron microscopy. The homogeneous morphologies of the pure polyester/epoxy blend and clay hybrid systems were ascertained with scanning electron microscopy. The tensile strength of the 5 wt % clay‐filled blend nanocomposite system was increased by 2.4 times compared to that of the pure blend resin system. The results suggest that the prepared nanocomposites have the potential to be used as active thin films for different applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The effect of the porosity of Ziegler–Natta catalyst particles on early fragmentation, nascent polymer morphology, and activity were studied. The bulk polymerization of propylene was carried out with three different heterogeneous Ziegler–Natta catalysts under industrial conditions at low temperatures, that is, with a novel self‐supported catalyst (A), a SiO2‐supported catalyst (B), and a MgCl2‐supported catalyst (C), with triethyl aluminum as a cocatalyst and dicyclopentyl dimethoxy silane as an external donor. The compact catalyst A exhibited no measurable porosity and a very low surface area (<5 m2/g) by Brunauer–Emmet–Teller analysis, whereas catalysts B and C showed surface areas of 63 and 250 m2/g, respectively. The surface and cross‐sectional morphologies of the resulting polymer particles at different stages of particle growth were analyzed by scanning electron microscopy and transmission electron microscopy. The compact catalyst A showed homogeneous and instantaneous fragmentation already in the very early stages of polymerization, which is typically observed for porous MgCl2‐supported Ziegler–Natta catalysts. Moreover, the compact catalyst particles gave rise to almost perfectly spherical polymer particles with a smooth surface. In contrast, the silica‐supported catalyst B gave rise to particles having a cauliflower morphology, and the second reference catalyst C produced fairly spherical polymer particles with a rough surface. All of the three catalysts exhibited similar activities of 450 g of polypropylene/g of catalyst after 30 min of polymerization, and most interestingly, the comparative kinetic data presented indicated that the reaction rates were not influenced by the porosity of the catalyst. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号