首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 478 毫秒
1.
The effects of chemical foaming agent (CFA) types (endothermic versus exothermic) and concentrations as well as the influence of all‐acrylic processing aid on the density and cell morphology of extrusion‐foamed neat rigid PVC and rigid PVC/wood‐flour composites were studied. Regardless of the CFA type, the density reduction of foamed rigid PVC/wood‐flour composites was not influenced by the CFA content. The cell size, however, was affected by the CFA type, independent of CFA content. Exothermic foaming agent produced foamed samples with smaller average cell sizes compared to those of endothermic counterparts. The experimental results indicate that the addition of an all‐acrylic processing aid in the formulation of rigid PVC/wood‐flour composite foams provides not only the ability to achieve density comparable to that achieved in the neat rigid PVC foams, but also the potential of producing rigid PVC/wood‐flour composite foams without using any chemical foaming agents.  相似文献   

2.
This study was conducted to characterize the mechanical properties of extrusion‐foamed neat rigid PVC and rigid PVC/wood‐flour composites by using endothermic and exothermic chemical foaming agents (CFAs). The specific elongation at break (ductility) of the samples was improved by foaming, while the opposite trend was observed for the tensile strength and modulus of the samples, regardless of the chemical foaming agent type. In addition, experimental results indicated that foaming reduced the Izod impact resistance of both neat rigid PVC and rigid PVC/wood‐flour composites but that this reduction was not statistically significant for the composites. A comparison between batch microcellular processing and extrusion foam processing was made, which demonstrated that foams with very fine cells (microcellular processed) exhibit better impact strength than foams with larger cells (extrusion processed with CFAs).  相似文献   

3.
The effect of high‐density polyethylene (HDPE)/polypropylene (PP) blending on the crystallinity as a function of the HDPE melt index was studied. The melting temperature and total amount of crystallinity in the HDPE/PP blends were lower than those of the pure polymers, regardless of the blend composition and melt index. The effects of the melt index, blending, and foaming conditions (foaming temperature and foaming time) on the void fractions of HDPEs of various melt indices and HDPE/PP blends were also investigated. The void fraction was strongly dependent on the foaming time, foaming temperature, and blend composition as well as the melt index of HDPE. The void fraction of the foamed 30:70 HDPE/PP blend was always higher than that of the foamed 50:50 HDPE/PP blend, regardless of the melt index. The microcellular structure could be greatly improved with a suitable ratio of HDPE to PP and with foaming above the melting temperature for long enough; however, using high‐melt‐index HDPE in the HDPE/PP blends had a deleterious effect on both the void fraction and cell morphology of the blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 364–371, 2004  相似文献   

4.
With maleic anhydride grafted polypropylene (PP‐g‐MAH) as a compatibilizer, composites of block‐copolymerized polypropylene (B‐PP)/nanoclay were prepared. The effects of the PP‐g‐MAH and nanoclay content on the crystallization and rheological properties of B‐PP were investigated. The microcellular foaming behavior of the B‐PP/nanoclay composite material was studied with a single‐screw extruder foaming system with supercritical (SC) carbon dioxide (CO2) as the foaming agent. The experimental results show that the addition of nanoclay and PP‐g‐MAH decreased the melt strength and complex viscosity of B‐PP. When 3 wt % SC CO2 was injected as the foaming agent for the extrusion foaming process, the introduction of nanoclay and PP‐g‐MAH significantly increased the expansion ratio of the obtained foamed samples as compared with that of the pure B‐PP matrix, lowered the die pressure, and increased the cell population density of the foamed samples to some extent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44094.  相似文献   

5.
The electron‐beam preirradiation and reactive extrusion technologies were used to prepare maleic anhydride (MAH)/vinyltrimethoxysilane (VTMS)‐co‐grafting polypropylene (PP) as a high‐performance compatibilizer for wood‐flour/PP composites. The grafting content, chemical structure, and crystallization behavior of the compatibilizers were characterized through Fourier transform infrared spectroscopy, differential scanning calorimetry, and an extraction method. The effects of the compatibilizers on the mechanical properties, water absorption, morphological structure, and torque rheological behavior of the composites were investigated comparatively. The experimental results demonstrate that MAH/VTMS‐g‐PP markedly enhanced the mechanical properties of the composites. Compared with MAH‐g‐PP and VTMS‐g‐PP, MAH/VTMS‐g‐PP clearly showed synergistic effects on the increasing mechanical properties, water absorption, and compatibility of the composites. Scanning electron microscopy further confirmed that the adhesion and dispersion of wood flours in the composites were effectively improved by MAH/VTMS‐g‐PP. These results were also proven by the best water resistance of the wood‐flour/PP composites with MAH/VTMS‐g‐PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
A series of polypropylene (PP) nanocomposites containing 2, 4, and 6 wt % of an organophilic montmorillonite clay was prepared via direct melt mixing in the presence of maleic anhydride grafted polypropylene (PP‐g‐MAH) as compatibilizing agent. Microstructure characterization was performed by X‐ray diffraction analysis. Nanocomposites exhibited a 15 and 22% enhancement in tensile modulus and impact strength, respectively. The heat deflection temperature of PP nanocomposites was 36°C greater than for pure PP. Thermal and mechanical properties of nanocomposites were compared to properties of traditional PP‐talc and PP‐glass fiber composites. The results showed that the properties of nanocomposites improved compared to ordinary polypropylene composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Wood fiber reinforced polymer composites represent a relatively small but rapidly growing material class, extensively applied in interior building applications and in the automotive industry. The polymer‐wood fiber composites utilize fibers as reinforcing filler in the polymer matrix and are known to be advantageous over the neat polymers in terms of the materials cost and mechanical properties such as stiffness and strength. Wood fiber reinforced polymer composites are microcellularly processed to create a new class of materials with unique properties. Most manufacturers are evaluating new alternatives of foamed composites that are lighter and more like wood. Foamed wood composites accept screws and nails like wood, more so than their non‐foamed counterparts. They have other advantages such as better surface definition and sharper contours and corners than non‐foamed profiles, which are created by the internal pressure of foaming. This paper represents a review on microcellular wood fiber reinforced polymer composites obtained by different processes (batch, injection molding, extrusion, and compression molding process) and includes an overview of foaming agents (physical and chemical) and the foaming of wood fiber‐polymer composites (changes in phase morphology, formation of polymer‐gas solution, cell nucleation, and cell growth control).

  相似文献   


8.
In some technical areas, mainly in the automotive industry, glass fiber reinforced polymers are intended to be replaced by natural fiber reinforced polymer systems. Therefore, higher requirements will be imposed to the physical fiber properties, fiber‐matrix adhesion, and the quality assurance. To improve the properties of epoxy resins (EP) and polypropylene (PP) composites, flax and hemp fibers were modified by mercerization and MAH‐PP coupling agent was used for preparing the PP composites. The effects of different mercerization parameters such as concentration of alkali (NaOH), temperature, and duration time along with tensile stress applied to the fibers on the structure and properties of hemp fibers were studied and judged via the cellulose I–II lattice conversion. It was observed that the mechanical properties of the fibers can be controlled in a broad range by using appropriate mercerization parameters. Unidirectional EP composites were manufactured by the filament winding technique; at the PP matrix material, a combination with a film‐stacking technique was used. The influence of mercerization parameters on the properties of EP composites was studied with hemp yarn as an example. Different macromechanical effects are shown at hemp‐ and flax‐PP model composites with mercerized, MAH‐PP‐treated, or MAH‐PP‐treated mercerized yarns. The composites' properties were verified by tensile and flexural tests. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2150–2156, 2004  相似文献   

9.
This paper deals with (maleic anhydride)‐grafted polypropylene (MAH‐g‐PP) and wood flour reinforcement and their effects on the dynamic, mechanical, morphological, and rheological properties of waste polypropylene (PP) composites. MAH‐g‐PP was used as a compatibilizer to improve the physical interaction between the filler and matrix. The composites were prepared by using a twin‐screw extruder followed by injection molding. Thermal stability and mechanical properties of the compatibilized system increased as compared to their values for the uncompatibilized system. Also, nearly 60% and 30% loss was found for mechanical properties and weight loss, respectively, in a biodegradability study. J. VINYL ADDIT. TECHNOL., 20:24–30, 2014. © 2014 Society of Plastics Engineers  相似文献   

10.
A one‐way analysis of variance and thermal analysis were performed in this study to examine the influences of the contents, types (exothermic vs. endothermic), and forms (pure vs. masterbatch) of chemical foaming agents (CFAs), as well as the use of coupling agents, on the density reduction (or void fraction) and cell morphology of extrusion‐foamed neat high density polyethylene (HDPE) and HDPE/wood‐flour composites. The CFA types and forms did not affect the void fractions of both the neat HDPE and HDPE/wood‐flour composites. However, a gas containment limit was observed for neat HDPE foams whereas the average cell size achieved in the HDPE/wood‐flour composite foams remained insensitive to the CFA contents, irrespective of the foaming agent types. The experimental results indicated that the use of coupling agent in the formulation was required to achieve HDPE/wood‐flour composite foams with high void fraction. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3139–3150, 2003  相似文献   

11.
The melt‐direct intercalation method was employed to prepare poly(propylene) (PP)–maleic anhydride grafted poly(propylene) (PP‐g‐MAH)–organic‐montmorillonite (Org‐MMT) nanocomposites. X‐ray diffractometry (XRD) was used to investigate the intercalation effect, crystallite size, and crystal cell parameter in these composites. Two kinds of maleated PP, with graft efficiencies of 0.6 and 0.9 wt %, and two sorts of manufacturing processes were used to prepare nanocomposites and then to investigate their effects on intercalation behavior. The results showed that the intercalation effect was enhanced by increasing the content of PP‐g‐MAH, using maleated PP with higher graft efficiency, and adopting the mold process. The crystallite size of nanocomposites perpendicular to the crystalline plane, such as (040), (130), (111), and (041), reached the minimum value when the content of PP‐g‐MAH was 20 wt %. This result indicated that the crystallite size of PP in nanocomposites decreased by proper addition of PP‐g‐MAH. Maximum values in tensile strength (40.2 MPa) and impact strength (24.3 J/m) were achieved when the content of PP‐g‐MAH was 10 and 20%, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3225–3231, 2003  相似文献   

12.
In this report, melt grafting of maleic anhydride (MAH) and epoxy resin onto polypropylene (PP) by peroxide‐initiated reactive extrusion has been investigated. As evidenced by Fourier transform infrared spectroscopy, both MAH and epoxy resin were successfully grafted onto PP through the reactions of MAH with PP and epoxy resin with MAH. It was found that tetramethyl thiuram disulfide could promote the grafting of MAH and inhibit the degradation of PP, as revealed by chemical titration and melt flow experiments, through prolonging the lifetime of the macroradical; meanwhile, epoxy resin could reduce the sublimation of MAH and the maximum grafting degree of MAH. Furthermore, the introduction of grafted products was found to enhance the mechanical properties of PP/glass fiber composites, and this influence was very significant at high grafting degrees with a high content of epoxy resin, which could be interpreted in terms of improved compatibility and adhesion at the interface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43422.  相似文献   

13.
The phosphoric acid‐pentaerythritol‐melamine copolymer, which is composed of three main components of intumescent flame retardant (IFR) and has optimal intumescent degree, was selected as IFR. The influence of meleated polypropylene (PP‐g‐MAH) on the properties and compatibility of IFR polypropylene (PP) composites were studied. The results obtained from mechanical tests, rheological behavior of composites, and scanning electron microscope showed that PP‐g‐MAH was a true coupling agent for IFR/PP blends and did not change the necessary flame retardancy. The cocrystallization between bulk PP and PP segments of PP‐g‐MAH was also proven by WAXD analysis. Flow test showed that the flow behaviors of composites in the melt are those of a pseudoplastic and it is very small for PP‐g‐MAH affecting rheological behavior of the PP/IFR composite. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 257–262, 2002  相似文献   

14.
In the present study, an epoxy resin was dynamically cured in a polypropylene (PP)/maleic anhydride–grafted PP (MAH‐g‐PP)/talc matrix to prepare dynamically cured PP/MAH‐g‐PP/talc/epoxy composites. An increase in the torque at equilibrium showed that epoxy resin in the PP/MAH‐g‐PP/talc composites had been cured by 2‐ethylene‐4‐methane‐imidazole. Scanning electron microscopy analysis showed that MAH‐g‐PP and an epoxy resin had effectively increased the interaction adhesion between PP and the talc in the PP/talc composites. Dynamic curing of the epoxy resin further increased the interaction adhesion. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had higher crystallization peaks than did the PP/talc composites. Thermogravimetric analysis showed that the addition of MAH‐g‐PP and the epoxy resin into the PP/talc composites caused an obvious improvement in the thermal stability. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best thermal stability of all the PP/talc composites. The PP/MAH‐g‐PP/talc/epoxy composites had better mechanical properties than did the PP/MAH‐g‐PP/talc composites, and the dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best mechanical properties of all the PP/talc composites, which can be attributed to the better interaction adhesion between the PP and the talc. The suitable content of epoxy resin in the composites was about 5 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

15.
Long glass fiber‐reinforced polypropylene composites were prepared using self‐designed impregnation device. Effects of the different injection temperature on mechanical properties, crystallization, thermal, and dynamic mechanical properties of long glass fiber‐reinforced polypropylene composites were discussed. The differential scanning calorimetry (DSC) results indicate that the melting peak temperature of PP/LGF composites gradually reduced, however, the crystallinity of PP/LGF composites gradually increased with increasing injection temperature. Thermo‐gravimetric analyzer (TGA) results demonstrate that with increasing injection temperature, the temperature of the PP/LGF composites melt increased, the viscosity of the PP/LGF composites melt lowered, the mold filling of the PP/LGF composites melt was easy, the shear force of glass fiber was relatively low, which made the residual length of glass fiber in products increase. Dynamic thermal mechanical analyzer (DMA) results show that the storage modulus of PP/LGF composites is the highest while the injection temperature is at 290°C, and the peak value of tan σ of PP /LGF composites at 290°C is minimal, which indicates that the mechanical properties of PP /LGF composites at 290°C is the best. What' more, the injection temperature at 290°C significantly ameliorated “glass fiber rich skin” of products of glass fiber‐reinforced composites. J. VINYL ADDIT. TECHNOL., 24:233–238, 2018. © 2016 Society of Plastics Engineers  相似文献   

16.
Polypropylene (PP)/wood‐fiber (WF) composites were prepared by intermeshing co‐rotating twin screw extruder, and microcellular closed cell PP/WF composite foams were prepared by using pressure‐quenched batch process method. The effect of various compatibilizers on the mechanical properties, morphology, crystallinity, rheological properties, and foamability of PP/WF composites were investigated. The results showed that PP/WF composite with addition of PP‐g‐MA as compatibilizer had the highest tensile strength, stiffness, and crystallinity, after foaming, it showed highest relative density and cell density, as well as the smallest cell size. Higher crystallinity of PP/WF composites, showed higher stiffness and higher relative density. J. VINYL ADDIT. TECHNOL., 19:250–257, 2013. © 2013 Society of Plastics Engineers  相似文献   

17.
A series of polypropylene/maleic anhydride grafted polypropylene octane elastomer (MAH‐g‐POE)/clay (PPMC) nanocomposites were prepared with a novel compatilizer MAH‐g‐POE and different contents of octadecyl amine modified montmorillonite, and the effects of clay contents on the dynamic mechanical and rheological properties of these PPMC composites were investigated. With clay content increasing, the characteristic X‐ray diffraction peak changed from one to two with intensity decreasing, indicating the decreasing concentration of the intercalated clay layers. The gradual decrease of crystallization temperature of PPMC composites with the increase of clay loading should be attributed to the preferred intercalation of MAH‐g‐POE molecules into clay interlayer during blending, which is also reflected by scanning electron microscopy observations. By evaluating the activation energy for the glass transition process of MAH‐g‐POE and polypropylene (PP) in the PPMC composites, it is found that clay intercalation could cause the restriction effect on the glass transition of both MAH‐g‐POE and PP, and this restriction effect appears stronger for PP and attained the highest degree at 5 wt % clay loading. The melt elasticity of PP could be improved apparently by the addition of MAH‐g‐POE, and 5 wt % clay loading is enough for further enhancing the elastic proportion of PP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
The large quantity of moisture in wood‐flour may lead to the deterioration of the cell structure of foamed plastic wood‐flour composites in terms of cell size, non‐uniformity, and poor surface quality. Since these anomalies can cause poor mechanical properties of the foamed composites, the removal of the moisture from wood‐flour becomes a critical issue with respect to the improvement of these properties. The wood‐flour in this experimental study was first oven‐dried at different temperatures and then subjected to acetone extraction and thermogravimetric analysis (TGA). The oven‐dried wood‐flour was blended with plastic and then subjected to extrusion foaming. The results obtained from the TGA studies indicate that most volatiles were released from the extractives. Conversely, a comparative experimental study of the foaming behavior of these plastic/wood‐flour composites versus that of undried wood‐flour composites confirms that removal of the adsorbed moisture from wood‐flour results in a better cell morphology. However, it seems that some gaseous emissions released from wood‐flour are soluble in plastic and thereby favorably contribute to the development of the cell morphology. This paper describes the expansion mechanisms of wood‐flour composite foams resulting from the adsorbed moisture and dissolved gaseous emissions as well as resulting from the finely dispersed undissolved gas bubbles released from a chemical blowing agent.  相似文献   

19.
This article presents the results of a study of the processing and physicomechanical properties of environmentally friendly wood‐fiber‐reinforced poly(lactic acid) composites that were produced with a microcompounding molding system. Wood‐fiber‐reinforced polypropylene composites were also processed under similar conditions and were compared to wood‐fiber‐reinforced poly(lactic acid) composites. The mechanical, thermomechanical, and morphological properties of these composites were studied. In terms of the mechanical properties, the wood‐fiber‐reinforced poly(lactic acid) composites were comparable to conventional polypropylene‐based thermoplastic composites. The mechanical properties of the wood‐fiber‐reinforced poly(lactic acid) composites were significantly higher than those of the virgin resin. The flexural modulus (8.9 GPa) of the wood‐fiber‐reinforced poly(lactic acid) composite (30 wt % fiber) was comparable to that of traditional (i.e., wood‐fiber‐reinforced polypropylene) composites (3.4 GPa). The incorporation of the wood fibers into poly(lactic acid) resulted in a considerable increase in the storage modulus (stiffness) of the resin. The addition of the maleated polypropylene coupling agent improved the mechanical properties of the composites. Microstructure studies using scanning electron microscopy indicated significant interfacial bonding between the matrix and the wood fibers. The specific performance evidenced by the wood‐fiber‐reinforced poly(lactic acid) composites may hint at potential applications in, for example, the automotive and packaging industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4856–4869, 2006  相似文献   

20.
In this study, the effects of batch processing conditions (foaming time and temperature) and blend composition as well as the effect of incorporating wood fiber into the blends on the crystallinity, sorption behavior of CO2, void fraction, and cellular morphology of microcellular foamed high‐density polyethylene (HDPE)/polypropylene (PP) blends and their composites with wood fiber were studied. Blending decreased the crystallinity of HDPE and PP and facilitated microcellular foam production in blend materials. The void fraction was strongly dependent on the processing conditions and on blend composition. Foamed samples with a high void fraction were not always microcellular. The addition of wood fiber inhibited microcellular foaming. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2842–2850, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号