首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogenation is one important method of chemical modification, which improves the physical, chemical and thermal properties of diene‐based elastomers. Natural rubber latex (NRL) could be hydrogenated to a strictly alternating ethylene‐propylene copolymer using a diimide reduction system. The diimide reduction technique of NRL was accomplished by using hydrazine hydrate/hydrogen peroxide and Cu2+ as catalyst. The hydrogenated products are characterized by FTIR and NMR spectroscopy. It has been found that cupric acetate is a highly active catalyst for the reaction and the addition of a controlled amount of gelatin demonstrated a beneficial effect on the degree of hydrogenation, whereas, sodium dodecyl sulfate (SDS) acted as a stabilizer of the latex particle in the reaction system and reduced the degree of hydrogenation. In the presence of SDS, a longer reaction time and a higher amount of hydrazine hydrate was required for hydrogenation of NRL. Gel formation during hydrogenation does not significantly affect the degree of hydrogenation. Gel inhibitors such as hydroquinone also decrease the degree of hydrogenation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

2.
The mechanism and the optimum conditions for the reduction of residual double bonds in styrene-butadiene rubber (SBR) latex by hydrogenating the polybutadiene in the latex form were studied. The hydrogenation involves a copper ion (II)-catalyzed procedure in which diimide hydrogenation agent is generated in situ at the surfaces of latex particles by a hydrazine/hydrogen peroxide redox system. The surface density of the copper ion in particle surfaces was found to be a crucially important parameter in controlling the degree of hydrogenation. The distribution of the double bonds in the latex particles after the hydrogenation was found to be dependent on the particle size and the extent of crosslinking in the particles. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2047–2056, 1997  相似文献   

3.
Hydrogenation is an important method of chemical modification, which improves the physical, chemical, and thermal properties of diene‐based elastomers. Natural rubber latex (NRL) could be hydrogenated to a strictly alternating ethylene–propylene copolymer using diimide generated in an in situ system. The diimide generated using the in situ technique for hydrogenation of NRL was accomplished by thermolysis of p‐toluenesulfonyl hydrazide (TSH). A molar ratio of TSH to double bonds equal to 2 : 1 was found to be the optimum ratio to provide a high percentage of hydrogenation. 95% Degree of saturation of NRL was achieved in o‐xylene. Hydrogenated products are characterized by FTIR and NMR spectroscopy. The thermal stability of hydrogenated rubber was improved as shown from the results of thermogravimetric analysis. From the differential scanning calorimetry measurement, the glass transition temperature of the hydrogenated product did not appear to change. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2885–2895, 2007  相似文献   

4.
2,6‐Bis (4‐aminophenoxy) pyridine was prepared via reaction of 4‐aminophenol with 2,6‐dichloropyridine in the presence of potassium carbonate in N‐methyl‐2‐pyrrolidone (NMP). This pyridine‐based ether diamine was reacted with two moles of trimellitic anhydride to synthesize related diimide‐diacid (DIDA). A high temperature solution polycondensation reaction of DIDA with different diols in the presence of triethylamine hydrochloride in dichlorobenzene resulted in different poly(ether imide ester)s. The monomer and polymers were fully characterized, and the physical and thermal properties of the polymers were studied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 570–576, 2005  相似文献   

5.
Nanosized ethylene–propylene rubber (EPM) latex with a particle size of 47 nm was synthesized via an alternative route consisting of isoprene (IP) polymerization followed by hydrogenation. First, the IP monomer was polymerized by differential microemulsion polymerization to obtain polyisoprene (PIP) rubber latex with a particle size of 42 nm. The structure of synthetic PIP was hydrogenated at the carbon–carbon double bonds to produce an ethylene–propylene copolymer by diimide reduction in the presence of hydrazine and hydrogen peroxide using boric acid as promotor. The degree of hydrogenation was determined by proton nuclear magnetic resonance (1H‐NMR) spectroscopy and the structure of the ethylene–propylene copolymer was identified by 13C‐NMR spectroscopy. In nanosized PIP hydrogenation, the hydrogenation level was found to be increased by boric acid addition. An EPM yield of 94% was achieved using a hydrogen peroxide : hydrazine ratio of 1.5 : 1. The EPM produced from PIP has high thermal stability with the maximum decomposition temperature of 510°C and a glass transition temperature of ‐42.4°C close to commercial ethylene–propylene diene rubber. Dynamic mechanical analysis indicated that EPM had a maximum storage modulus due to the saturated carbons domains of the ethylene segments in the polymer chains. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Hydrogenation is a useful method which has been used to improve oxidative and thermal degradation resistance of diene‐based polymers. The quantitative hydrogenation of cis‐1,4‐polyisoprene which leads to an alternating ethylene–propylene copolymer was studied in the present investigation. To examine the influence of key factors on the reaction, such as catalyst concentration, polymer concentration, hydrogen pressure, and temperature, a detailed study of the hydrogenation of cis‐1,4‐polyisoprene catalyzed by the Ru complex, Ru(CH?CH(Ph))Cl(CO)(PCy3)2 was carried out by monitoring the amount of hydrogen consumed. Infrared and 1H‐NMR spectroscopic measurements confirmed the final degree of hydrogenation. The hydrogenation of cis‐1,4‐polyisoprene followed pseudo‐first‐order kinetics in double‐bond concentration up to high conversions of double bond, under all sets of conditions studied. The kinetic results suggested a first‐order behavior with respect to total catalyst concentration as well as with respect to hydrogen pressure. The apparent activation energy for the hydrogenation process, obtained from an Arrhenius plot, was 51.1 kJ mol?1 over the temperature range of 130 to 180°C. Mechanistic aspects of the catalytic process are discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3259–3273, 2004  相似文献   

7.
A series of cyclosiloxane‐based cholesteric liquid crystalline elastomers were synthesized by using cholest‐5‐en‐3‐ol(3β)‐4‐(2‐propenyloxy)benzoate and a soft nonmesogenic crosslinking agent, acryloyl‐hexyl acrylate. The polymers were prepared in a one‐step reaction with the crosslinking contents ranging between 0 and 5.6 weight %. The effective crosslink density (Mc) was determined by swelling experiments employing Flory–Rehner models. All the polymers exhibited thermotropic LC properties and revealed a cholesteric phase. With increase of the crosslinking component in the polymers, the melting behavior disappeared and the enthalpy of transition decreased. But the temperature of glass transition and clear point changed little and did not show uptrend or downtrend. Reflection spectra of the cholesteric mesophase of the polymers showed that the reflected wavelength became broad and shifted to long wavelength with increase of the soft crosslinking component in the polymer systems. All these results originate from the effect of the soft nonmesogenic chemical crosslinking. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 625–631, 2005  相似文献   

8.
The hydrogenation of dienes such as 1,3‐butadiene, cyclooctadiene, and of acetylenic hydrocarbons on Pd catalysts shows high reaction rates and consequently, a strong influence of mass transfer on the selectivity of the intermediate alkene or cycloalkene product. 100 % selectivity towards (cyclo)‐alkene hydrogenation is achieved for the gas phase when the Thiele modulus is , where L is the thickness of the active layer and Deff is the effective diffusion coefficient of the diene. The interdependencies expressed by this formula were studied in detail using model catalysts with regular pores of uniform length and diameter and perpendicular to the surface. These catalysts were prepared by anodic oxidation of aluminium wires and immobilization of the active Pd. For the liquid phase procedure of selective hydrogenation, a reaction mass transfer model has been derived in order to compare the gas phase and liquid phase procedures, in particular with respect to the selectivity. The hydrogenation of 1,3‐cyclooctadiene and of 1,3‐butadiene were studied for both procedures employing the same catalyst. The rate of hydrogenation can be represented for both cases by the identical kinetic equation r1 = k1 cH2. This result is interpreted by assuming that the access of hydrogen to the surface through the dense layer of adsorbed diene is the rate determining step.  相似文献   

9.
The oxidation of some chlorophenols: 4‐chlorophenol, 2,4‐dichlorophenol, 2,4,6‐trichlorophenol, 2,3,4,6‐tetrachlorophenol, tetrachlorocatechol (3,4,5,6‐tetrachloro‐2‐hydroxy phenol) and 4‐chloroguaiacol (4‐chloro‐2‐methoxy phenol) has been studied via single photodecomposition produced by polychromatic UV irradiation, oxidation by hydroxyl radicals generated by Fenton's reagent (hydrogen peroxide plus ferrous ions), and degradation by hydroxyl radicals produced by combinations of UV irradiation plus hydrogen peroxide, and UV irradiation plus hydrogen peroxide and ferrous ions (photo‐Fenton system). These organics have been selected as models of chloro‐phenolic derivative pollutants present in wastewaters and groundwaters. The degradation levels obtained in each process are reported. The quantum yields in the single photodecomposition reaction and the rate constants between the chlorophenols and the hydroxyl radicals in the reaction with Fenton's reagent are determined. Finally, the additional contributions to the photodecomposition promoted by the radical reaction in the combined UV/H2O2 and photo‐Fenton systems are also evaluated. © 2001 Society of Chemical Industry  相似文献   

10.
The objective of this work is to ascertain the characteristics of desirable (cure) and especially undesirable (scorch) crosslinking when carbon black filled ethylene propylene diene terpolymer (EPDM) is processed using different peroxide initiators. The mixing temperature and the nature of the peroxide initiator are crucial parameters affecting scorch (undesirably premature crosslinking) in this rubber. Processability and properties of EPDM prepared using various mixer set temperatures have been investigated. Dicumyl peroxide (Luperox DC), di(t‐butylperoxy) diisopropylbenzene (Luperox F), and 2,5‐dimethyl‐2,5‐di(t‐butylperoxy) hexane (Luperox 101) were used as crosslinking initiators. Higher mixing temperatures give shorter scorch times, greater scorch magnitudes, greater heterogeneities in crosslink spatial distribution and poorer tensile properties. However, extreme localization of the unwanted crosslinking at the rubber‐filler interface does have a beneficial effect. Luperox DC offers poorer processability and poorer resulting properties than do Luperox F and Luperox 101, due to its shorter half‐life and greater solubility in the rubber phase. This is the first time that the spatial heterogeneity of crosslinking and scorch has been related to the basic thermodynamics of 3‐component 2‐phase systems. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44523.  相似文献   

11.
A hydrogenated styrene–butadiene copolymer (HSBR) was prepared by a diimide reduction of SBR in the latex stage. The influence of the styrene content on various reaction parameters, namely, time, temperature, and concentration of the reactants and the catalyst was studied. A comparatively lower temperature, longer time, lesser amount of hydrogen peroxide, and higher amount of the catalyst are required to optimize the hydrogenation reactions of SBR with a higher styrene content. The diimide reduction of SBR is first order with respect to the olefinic substrate and the apparent activation energy increases with increase in the styrene level. All the hydrogenated copolymers were characterized with the help of IR, NMR, and DSC. The TGA data indicate a higher thermal stability of HSBR as compared to SBR in nitrogen, although an anomalous behavior is observed in air due to crosslinking and oxidation. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1581–1595, 1999  相似文献   

12.
The crosslinking efficiency of various commercially available organic peroxides (dicumyl peroxide, O,Ot‐butyl O‐2‐ethylhexylperoxycarbonate, t‐butyl peroxybenzoate, t‐butyl 3,5,5‐trimethylperoxyhexanoate, and t‐butyl 2‐ethylperoxyhexanoate) was tested on high‐density polyethylene (HDPE) in its molten state. The variations of the concentrations of the peroxides versus the crosslinking extent were plotted for these peroxides, and the values were compared. Dicumyl peroxide was found to be the best crosslinking agent for HDPE. The efficiency of the HDPE crosslinking with each peroxy derivative was analyzed on the basis of the behavior of the radicals generated from it. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 75–81, 2004  相似文献   

13.
The scope of this study is to continue our earlier studies on the peroxide curing of diene elastomers. The effect of peroxide content and temperature on the curing and mechanical properties of NBR and H‐NBR rubbers with different acrilonitrile content was evaluated. Experimental evidence indicates that saturated rubbers behave as expected whereas in unsaturated nitrile rubbers abstraction of allylic hydrogen and addition to the double bonds can act as mechanism of crosslinking, the weight of each mechanism is dependent of DCP content and curing temperature. The addition mechanism produces densely crosslinked zones or clusters, generating a heterogeneous network with effect on the vulcanizate properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3377–3382, 2007  相似文献   

14.
The development of chlorine containing species during the hydrogen peroxide‐based chlorine dioxide generation process has been determined. Accordingly, two distinct phases, namely the induction period and the steady‐state phase, were identified. In the induction period, it was observed that chloride and chlorous acid are generated, while chlorine, a byproduct from some methanol‐based processes, is not detectable. The absence of chlorine is explained by the fast reaction kinetics between hydrogen peroxide and chlorine, which results in the formation of chloride. In the steady‐state phase, due to the accumulation of chloride and chlorous acid during the induction period, the reaction between chloric acid and chlorous acid, which is responsible for the generation of chlorine dioxide in the hydrogen peroxide‐based ClO2 process, becomes possible. Chloride is a catalyst in such a reaction.  相似文献   

15.
Ethylene vinyl acetate (EVA) copolymers with different amounts of vinyl acetate were melt‐functionalized with maleic anhydride. The effect of benzoyl peroxide, t‐butyl perbenzoate, and dicumyl peroxide (DCP) as free‐radical initiators on the functionalization performance was studied. The crosslinking reactions occur to a larger extent than in polyethylene, indicating that the vinyl acetate groups favor the formation of free radicals. From all the experiments performed in this study, the recommended initiation system to achieve the best values of the functionalization degree and the lower gel content involves the use of DCP in a concentration of about 0.3 wt % and a maleic anhydride concentration around 5.0 wt %. From FTIR and TGA analyses, it is suggested that the hydrogen abstraction in the EVA copolymers occurs both in the methyl group of the acetate moiety and in the tertiary C—H. The free radicals generated in the tertiary C—H react with maleic anhydride in a higher proportion. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1799–1806, 1999  相似文献   

16.
Low‐molar‐mass, OH‐telechelic polybutadienes were hydrogenated (1) by diimide alone and (2) by using a novel method, consisting of the following two steps: up to some 95% degree of conversion by gaseous hydrogen with conventional Ziegler–Natta catalysts, and, only then, up to almost full saturation by diimide. The two‐step method, which has been found to be equally efficient, enables one to decrease substantially the necessary feed of p‐toluenesulfonylhydrazide, by the thermal decomposition of which diimide is generated. The crude saturated products, which could not be purified by a conventional (re)precipitation technique due to their low molar mass, contained a relatively large amount of a side‐product, bis(p‐tolyl)disulfide (TDS). It was found that free TDS can be converted quantitatively by reduction cleavage into p‐tolyl mercaptan (TM) without changing the structure of the polymeric product, and TM can then be removed from the mixture by alkaline extraction. Alternatively, the crude product can be freed from TDS by chromatography. With the two‐step hydrogenation method, only a small amount of the fragments and/or precursors of TDS add to the 5% residual CC double bonds of the partially hydrogenated polybutadiene chains. After any of the two purification procedures, the fully saturated products usually contained less than 1 wt % of such undesirable substituents only, which is comparable with the reported single‐step diimide hydrogenation of the initial, fully unsaturated polybutadiene in the presence of a proton scavenger (tri‐n‐propylamine). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3203–3213, 1999  相似文献   

17.
A mesogenic crosslinking agent M‐1 was synthesized to minimize the perturbations of nonmesogenic crosslinking agent for liquid‐crystalline elastomers. The synthesis of side‐chain liquid‐crystalline elastomers containing a rigid mesogenic crosslinking agent M‐1 and a nematic monomer M‐2 was described by a one‐step hydrosilylation reaction. The chemical structures of the obtained monomers and network polymers were confirmed by Fourier transform infrared and 1H‐NMR spectroscopy. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the crosslinking units on the phase behavior was discussed. The liquid‐crystalline elastomers containing less than 15 mol % of the crosslinking units showed elasticity, reversible phase transition, and threaded texture. The experimental results demonstrated that isotropic temperature and liquid‐crystalline range of polymers P‐1–P‐7 decreased a little as the concentration of crosslinking agent M‐1 increased, and the use of mesomorphic crosslinking agent M‐1 promotes the arrangement of liquid‐crystalline units from P‐1 to P‐5. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1712–1719, 2005  相似文献   

18.
A series of polystyrene‐b‐polybutadiene (PSt‐b‐PBd) block copolymers with various chain lengths and compositions were synthesized by sequential living anionic polymerization and then converted into the corresponding polystyrene‐b‐poly(ethylene‐co‐butene) (PSt‐b‐PEB) block copolymers through the selective hydrogenation of unsaturated polybutadiene segments. Noncatalytic hydrogenation was carried out with diimide as the hydrogen source. The microstructures of PSt‐b‐PBd and PSt‐b‐PEB were investigated with gel permeation chromatography, 1H‐NMR, 13C‐NMR, Fourier transform infrared, and differential scanning calorimetry. The results showed that the hydrogenation reaction was conducted successfully and that the chain length and molecular weight distribution were not altered by hydrogenation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2632–2638, 2006  相似文献   

19.
A new class of main‐chain liquid‐crystalline photodimerizable vanillylidene‐containing alkylpolyphosphate esters were synthesized from 2,5‐bis[m‐hydroxyalkyloxy(vanillylidene)] cyclopentanones with various alkylphosphoro‐ dichloridates by solution polycondensation in chloroform at ambient temperature. Their chemical structures were confirmed by FT‐IR, 1H, 13C and 31P NMR spectroscopic analysis. Dilute‐solution viscosity values were measured in order to obtain the intrinsic viscosities of the synthesized polymers. Mesogenic properties and phase behavior were investigated by the use of hot‐stage optical polarized microscopy and differential scanning calorimetry. Thermogravimetric analysis revealed that all of the polymers were stable up to 170–230 °C and decomposed with high char yields. The shorter methylene‐chain‐containing polymers did not show a liquid‐crystalline phase, while the longer methylene‐chain‐ containing polymers showed grainy and nematic textures. The Tg, Tm and Ti values of the polymers decreased with increasing flexible methylene chain length in the polymer backbones. The photocrosslinking properties of the polymers were studied by UV light/UV spectroscopy; the crosslinking proceeds via 2π–2π cycloaddition reactions of the vanillylidene exocyclic double bonds of the polymers. The rate of crosslinking was faster for the pendant ethoxy‐containing polymers than that of the pendant methoxy‐containing polymers. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
The use of vegetable oil macromonomers (VOMMs) as comonomers in emulsion polymerization enables good film coalescence without the use of solvents that constitute volatile organic compounds (VOCs). VOMMs are derived from renewable resources and offer the potential of post‐application crosslinking via auto‐oxidation. However, chain transfer reactions of VOMMs with initiator and/or polymer radicals during emulsion polymerization reduce the amount of allylic hydrogen atoms available for primary auto‐oxidation during drying. Vegetable oils and derivatives were reacted with butyl acrylate and methyl methacrylate via solution polymerization, and the polymerization was monitored using in situ infrared spectroscopy to determine the extent of chain transfer. 1H NMR spectroscopy was used to determine the loci of chain transfer and the molecular weight characteristics of the polymers were characterized by SEC. Solution polymerization was utilized because this limited temperature fluctuations and insolubility of the polymer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号