首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fine particles of anatase were suspended in solutions of ammonium alum with Al2O3/TiO2 molar ratios from 0.1:1 to 7:1. By spray drying the suspensions and calcining the spray-dried powders, Al2O3-TiO2 composite particles were obtained. The results show that after the spray drying, coatings of ammomium alum are formed on the surface of the anatase particles, leading to composite precursor powders (CCPs) with larger particle sizes. Upon calcining the CCPs, ammomium alum pyrolyzes to amorphous Al2O3 and anatase transforms into rutile. Both are mainly responsible for the observed particle size reductions as well as the densification of each composite particle. The in-situ formed α-Al2O3 and rutile may have higher reactivities, forming aluminum titanate at 1150 °C, about 130 °C lower than the theoretical temperature for the formation of Al2TiO5 by solid reaction. The reaction between α-Al2O3 and rutile starts from the interface between the anatase and the alum coating and mainly takes place in the single particles formed by spray drying. The molar ratio of Al2O3 to TiO2 influences the final crystalline phases in the composite powders, but not stoichiometrically.  相似文献   

2.
In this study, two types of nanoscale α‐Al2O3 particles were used for preparation of α‐Al2O3/thermoplastic polyurethane (TPU) composites. These α‐Al2O3 particles were either coated or uncoated with stearic acid. For the uncoated α‐Al2O3/TPU composite, the results of field‐emission scanning electron microscopy (FE‐SEM) and energy dispersive X‐ray spectrometry indicate that uncoated α‐Al2O3 particles are significantly aggregated together. This aggregation is due to the poor compatibility between the inorganic filler (α‐Al2O3) and the organic matrix (TPU). The size of clusters is in the range from 5 to 20 μm. For the coated α‐Al2O3/TPU composite, FE‐SEM results indicate that most coated α‐Al2O3 particles are well dispersed in the TPU matrix. This phenomenon results from the effect of surface modifier (i.e., stearic acid) on α‐Al2O3 particles. Stearic acid can act as a compatibilizer to bridge the boundary between the TPU matrix and the α‐Al2O3 particle. Stearic acid is not only a suitable surface modifier for the nanoscale α‐Al2O3 particle, but also a good dispersant for the dispersion of nanoscale α‐Al2O3 particles in the TPU matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Polyimide/Al2O3 (PI/Al2O3) nanocomposite films based on pyromellitic dianhydride and 4,4′‐oxydianiline were fabricated by adding different proportions of nano‐Al2O3 inorganic particles via in situ polymerization. Microstructural analysis by scanning electron microscope (SEM) showed that the inorganic particles were homogenously dispersed in the PI matrix when mixed with appropriate amount of nano‐Al2O3. Fourier transform infrared spectroscopy and X‐ray diffraction analysis were also used to investigate the effect of nano‐Al2O3 on the polymerization process. The obtained composite films and pure film were characterized by thermogravimetry analysis, and the experimental results indicated that when comparing with pure film, the nanocomposite films displayed a better thermal stability than the pure one. Moreover, results also showed that the thermal stability of composite films steadily improved with increased content of nano‐Al2O3 particle. The electrical property test demonstrated that the composite films performed improving electrical breakdown strength and corona resistance. The microstructure changes of pure film and PI/Al2O3 nanocomposite films during corona aging have been analyzed by SEM. POLYM. COMPOS., 37:763–770, 2016. © 2014 Society of Plastics Engineers  相似文献   

4.
The oxidation of Al‐particles down to nano‐scale was investigated by TG, SEM and in‐situ X‐ray diffraction. Al particles are usually coated by a 2–4 nm layer of Al2O3 which can be derived from the degree of weight increase on complete oxidation by TG‐curves. The low temperature oxidation of Al particles occurs at least in two steps. The first step builds a layer of 6 to 10 nm thickness composed of crystallites of the same size independent on the initial particle size. This reaction is dominated by chemical kinetics and converts a substantial fraction of the particle if the particle sizes decrease below 1 μm, an effect carefully to be taken into account for nano‐particles because of safety reasons. The second step combines diffusion and chemical reaction and proceeds therefore slowly, the slower the bigger the particles are. The kinetic parameters of these two steps can be obtained by a model taking into account both reaction steps, chemical kinetics and diffusion for spherical particles when fitting it to TG‐curves. X‐ray diffraction shows that particles smaller than 1 μm build γ‐ and θ‐Al2O3 in the first step with nano‐crystalline structures which are then transformed to α‐Al2O3.  相似文献   

5.
Composite films were successfully prepared from cellulose and two kinds of nanocrystalline TiO2 particles in a NaOH/urea aqueous solution (7.5 : 11 in wt %) by coagulation with H2SO4 solution. The structure, morphology, and properties of the films were characterized by transmission electron microscopy, scanning electron microscopy, X‐ray diffraction, TGA, tensile testing, UV–vis spectroscopy, and antibacterial test. The results indicated that TiO2 particles in a cellulose matrix maintained the original nanocrystalline structure and properties. TiO2(I) (anatase) and TiO2(II) (the mixture of anatase and rutile) particles exhibited a certain miscibility with cellulose. The tensile strength of two kinds of composite films was higher than 70 and 75 MPa, when the content of TiO2(I) and TiO2(II) was 4 and 11 wt %, respectively. The cellulose composite films containing nanocrystalline TiO2 particles displayed distinct antibacterial abilities and excellent UV absorption. This work provides a potential way for preparing functional composite materials from cellulose and inorganic nanoparticles in a NaOH/urea aqueous solution, without a destruction of the structure and properties of the particles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3600–3608, 2006  相似文献   

6.
Micrometer‐ and nanometer‐Al2O3‐particle‐filled poly(phthalazine ether sulfone ketone) (PPESK) composites with filler volume fractions ranging from 1 to 12.5 vol % were prepared by hot compression molding. We evaluated the tribological behaviors of the PPESK composites with the block‐on‐ring test rig by sliding PPESK‐based composite blocks against a mild carbon steel ring under dry‐friction conditions. The effects of different temperatures on the wear rate of the PPESK composites were also investigated with a ball‐on‐disc test rig. The wear debris and the worn surfaces of the PPESK composites were investigated with scanning electron microscopy, and the structures of the PPESK composites were analyzed with IR spectra. The lowest wear rate, 7.31 × 10?6 mm3 N?1 m?1, was obtained for the composite filled with 1 vol %‐nanometer Al2O3 particles. The composite with nanometer particles exhibited a higher friction coefficient (0.58–0.64) than unfilled PPESK (0.55). The wear rate of 1 vol %‐nanometer‐Al2O3‐particle‐filled PPESK was stable and was lower than that of unfilled PPESK from the ambient temperature to 270°C. We anticipate that 1 vol %‐nanometer‐Al2O3‐particle‐filled PPESK can be used as a good frictional material. We also found that micrometer‐Al2O3‐particle‐filled PPESK had a lower friction coefficient at a filler volume fraction below 5%. The filling of micrometer Al2O3 particles greatly increased the wear resistance of PPESK under filler volume fractions from 1 to 12.5%. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 993–1001, 2005  相似文献   

7.
Thermal and dynamic mechanical properties of polyphenylene sulfide (PPS) composites that were reinforced with different sized alumina (Al2O3) particles were studied. These composites were manufactured with two different sizes of Al2O3 particles 1 and 63 µm, using microcompounding and injection molding. Monosized Al2O3 particles reinforced up to 25 wt% loading content and mixed size Al2O3 particles reinforced at 15 wt% loading content as following particle weight proportions: 75% × 63 μm + 25% × 1 μm, 50% × 63 μm + 50% × 1 μm, 25% × 63 μm + 75% × 1 μm. Particle distribution investigations were performed by microcomputerized tomography (micro‐CT). Thermal properties were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods and also dynamic mechanical properties were investigated by dynamic mechanical thermal analysis (DMTA) method. The results showed that mixed size Al2O3 particle reinforced composites showed a great enhancement in dynamic mechanical properties without significant change in thermal properties. It was concluded that mixed size particles showed a great synergy to give better results compared with monosized particle reinforced composites. POLYM. COMPOS., 37:3219–3227, 2016. © 2015 Society of Plastics Engineers  相似文献   

8.
Porous TiO2 films decorated with Bi2O3 nanoparticles are fabricated via alkali‐hydrothermal of titanium (Ti) plate by varying the reaction time. The amorphous TiO2 is transformed into anatase after annealing the films at 500°C in air. The p‐type Bi2O3 nanoparticles are successfully assembled on the surface of porous n‐type TiO2 films through the ultrasonic‐assisted successive ionic layer adsorption and reaction (SILAR) technique to form Bi2O3/TiO2 nanostructure by the two cycles. The obtained Bi2O3/TiO2 films are consisted of a well‐ordered and uniform porous structure with an average pore diameter of about 100‐200 nm containing homogeneously dispersed Bi2O3 nanoparticles of ~5 nm diameter. Moreover, the resultant composites present excellent photocatalytic performance toward methyl blue (MB) degradation under UV and visible light irradiation, which could be mainly ascribed to the enhanced light adsorption capacity of unique composite structure and the formation of pn heterojunctions in the porous Bi2O3/TiO2 films. This research is helpful to design and construct the highly efficient heterogeneous semiconductor photocatalysts.  相似文献   

9.
《Desalination》2007,202(1-3):199-206
In order to develop efficient photocatalytic TiO2 films and membranes for application in water and wastewater treatment and reuse systems, there is a great need to tailor-design the structural properties of TiO2 material and enhance its photocatalytic activity. Through a simple sol–gel route, employing self-assembled surfactant molecules as pore directing agents along with acetic acid-based sol–gel route, we have fabricated nanostructured crystalline TiO2 thin films and TiO2/Al2O3 composite membranes with simultaneous photocatalytic, disinfection, separation, and anti-biofouling properties. The highly porous TiO2 material exhibited high specific surface area and porosity, narrow pore size distribution, homogeneity without cracks and pinholes, active anatase crystal phase, and small crystallite size. These TiO2 materials were highly efficient in the decomposition of methylene blue dye and creatinine, destruction of biological toxins (microcystin-LR), and inactivation of pathogenic microorganisms (Escherichia coli). Moreover, the photocatalytic TiO2 membranes exhibited not only high water permeability and sharp polyethylene glycol retention but also less adsorption fouling tendency. Here, we report results on the synthesis, characterization, and environmental application and implication of photocatalytic TiO2 films and membranes.  相似文献   

10.
Polyaniline (PANi)–titanium dioxide (TiO2) nanocomposite materials were prepared by chemical polymerization of aniline doped with TiO2 nanoparticles. Surface pressure–area (π‐A) isotherms of these nanocomposites show phase transformations in the monolayer during compression process. Multiple isotherms indicate that the monolayer of the nanocomposite material can retain its configuration during compression‐expansion cycles. Langmuir–Blodgett thin films of PANi–TiO2 nanocomposite were deposited on the quartz and indium tin oxide coated conducting glass substrates. Fourier transfer infrared spectroscopy and UV–visible spectroscopy study indicates the presence of TiO2 in PANi, whereas X‐ray Diffraction study confirmed the anatase phase of TiO2 and particle size (~nm) of PANi–TiO2. The morphology of Langmuir–Blodgett films of these nanocomposites was also characterized by atomic force microscopy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41386.  相似文献   

11.
Titanium dioxide core and polymer shell composite poly(methyl methacrylate‐con‐butyl acrylate‐co‐methacrylic acid) [P(MMA‐BA‐MAA)] particles were prepared by emulsion copolymerization. The stability of dispersions of TiO2 particles in aqueous solution was investigated. The addition of an ionic surfactant, sodium lauryl sulfate, which can be absorbed strongly at the TiO2/aqueous interface, increases the stability of the TiO2 dispersion effectively by increasing the absolute value of the ζ potential of the TiO2 particles. The adsorption of the nonionic surfactant, Triton X‐100, on the surface of TiO2 particles is less than that of the ionic surfactant. Fourier transform IR spectroscopy was used to measure the content of MAA composite particles. Dynamic light scattering characterized the composite particle size and size distribution. The field‐emission scanning electron microscopy results for the composite particles showed a regular spherical shape, and no bare TiO2 was detected on the entire surface of the samples. The composite particles that were produced showed good spectral reflectance compared to bare TiO2. Thermogravimetric analysis results indicated the encapsulated TiO2 and estimated density of composite particles. There was up to 78.9% encapsulated TiO2 and the density ranged from 1.76 to 1.94 g/cm3. The estimated density of the composite particles is suitable at 1.73 g/cm3, which is due to density matching with the suspending fluid. The sedimentation experiment indicates that reducing the density mismatch between the composite particles and suspending fluid may enhance the stability. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 72–79, 2005  相似文献   

12.
A sol–gel approach has been developed to prepare polyimide–TiO2 hybrid films from soluble polyimides and a modified titanium precursor. The rate of the hydrolysis reaction of titanium alkoxide can be controlled by using acetic acid as a modifier. FTIR and XPS indicated that TiO2 particles were well distributed in polyimide matrixes with particle size small per than 60 nm. Polyimide hybrid films having the TiO2 component ≤10% exhibited high thermal stability, high optical transparency and good mechanical properties and possessed higher dielectric constants than correspondingly polyimides. © 2000 Society of Chemical Industry  相似文献   

13.
Fluffy and homogenous sucrose‐coated‐γ‐Al2O3 structured precursor was prepared by drying ethanol‐water sucrose/Al2O3 suspension, in which the ethanol content of 85 vol% was optimized. Using the C/Al2O3 mixture pyrolyzed from such precursor with 23.2 wt% sucrose, single‐phase AlON powder was synthesized by two‐step carbothermal reduction and nitridation method at 1550°C for 2 h and 1700°C for another 1.5 h. The particle size of the AlON powder was around 0.6–1.0 μm. Compared with those synthesized by the traditional approaches with mechanical C/Al2O3, Al/Al2O3, or AlN/Al2O3 mixtures, the synthesis temperature was reduced about 50°C, and the AlON powder was fine and exhibited good dispersity. Such superiority of this method was attributed to that the pyrolyzed carbon film on Al2O3 particle greatly restrained Al2O3 coalescence during the thermal treatment.  相似文献   

14.
The polymerisation of a mixture of thiophene and N‐vinylcarbazole was achieved in aqueous suspension in the presence of nanodimensional alumina and FeCl3 as oxidant. The resultant composite was found to contain both polythiophene (PTP) and poly(N‐vinylcarbazole) (PNVC) components even after reflux in benzene, which would remove any PNVC homopolymer. The presence of the individual polymer components was endorsed by FTIR spectroscopic analyses. Thermogravimetric analyses showed that the overall stabilities of the composite and the corresponding homopolymers were in the order: PTP–Al2O3 > PTP > PTP–PNVC–Al2O3 > PNVC. Differential thermal analyses studies showed the manifestation of two different exotherms corresponding to the presence of two different polymeric constituents in the PTP–PNVC–Al2O3 composite. Differential scanning calorimetry studies revealed two glass‐transition temperatures (Tg) suggesting the presence of two polymeric moieties in the PTP–PNVC composite. Scanning electron micrographs of the PTP–Al2O3 and PTP–PNVC–Al2O3 composites showed distinctive morphological patterns. Transmission electron microscopic images of the composite revealed that the average particle size varied between 20 and 80 nm. DC conductivities of the composites were of the order of 10?6 S cm?1. Copyright © 2003 Society of Chemical Industry  相似文献   

15.
It has been demonstrated that effective medium approximation and mean field homogenization technique is a useful computational tool to predict the effective thermal and structural properties of alumina‐nickel (Al2O3‐Ni) composites. Nickel particle size and volume fraction, thermal interface resistance and porosity are found significant factors that affect thermal conductivity, elastoplastic behavior, elastic modulus and thermal expansion coefficient of Al2O3‐Ni composite. To complement the computational design, Al2O3‐Ni composite samples with designed range of volume fractions and nickel particle size are developed using spark plasma sintering process and properties are measured for model verification.  相似文献   

16.
Attempts were carried out to enhance the surface hydrophilicity of poly(L ‐lactide), that is, poly(L ‐lactic acid) (PLLA) film, utilizing enzymatic, alkaline, and autocatalytic hydrolyses in a proteinase K/Tris–HCL buffered solution system (37°C), in a 0.01N NaOH solution (37°C), and in a phosphate‐buffered solution (100°C), respectively. Moreover, its chain‐scission mechanisms in these different media were studied. The advancing contact‐angle (θa) value of the amorphous‐made PLLA film decreased monotonically with the hydrolysis time from 100° to 75° and 80° without a significant molecular weight decrease, when enzymatic and alkaline hydrolyses were continued for 60 min and 8 h, respectively. In contrast, a negligible change in the θa value was observed for the PLLA films even after the autocatalytic hydrolysis was continured for 16 h, when their bulk Mn decreased from 1.2 × 105 to 2.2 × 104 g mol?1 or the number of hydrophilic terminal groups per unit weight increased from 1.7 × 10?5 to 9.1 × 10?5 mol g?1. These findings, together with the result of gravimetry, revealed that the enzymatic and alkaline hydrolyses are powerful enough to enhance the practical surface hydrophilicity of the PLLA films because of their surface‐erosion mechanisms and that its practical surface hydrophilicity is controllable by varying the hydrolysis time. Moreover, autocatalytic hydrolysis is inappropriate to enhance the surface hydrophilicity, because of its bulk‐erosion mechanism. Alkaline hydrolysis is the best to enhance the hydrophilicity of the PLLA films without hydrolysis of the film cores, while the enzymatic hydrolysis is appropriate and inappropriate to enhance the surface hydrophilicity of bulky and thin PLLA materials, respectively, because a significant weight loss occurs before saturation of θa value. The changes in the weight loss and θa values during hydrolysis showed that exo chain scission as well as endo chain scission occurs in the presence of proteinase K, while in the alkaline and phosphate‐buffered solutions, hydrolysis proceeds via endo chain scission. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1628–1633, 2003  相似文献   

17.
Functional porous materials require easy fabrication methods with controllability of a wide range of pore size and its density for practical applications including optical devices. The Kirkendall effect based on unbalanced material diffusion provides such a possibility in conjunction with material configurations of multilayers. This study reports a formation of nanoscale pores within ZnO films in planar multilayered structures of Al2O3–ZnO‐aluminosilicate glass and demonstrates the mechanism of forming relatively large nanopores in ZnO near the ZnO–glass interface via stress‐promoted Kirkendall diffusion. Experimental characterizations supported by atomic simulation reveal that an enhanced in‐plane tensile stress in the ZnO films with increasing the thickness of the neighboring Al2O3 films can promote the diffusivity of the Zn atoms and the pore growth in the ZnO films. The pore size and location in the intermediate ZnO layer of the Al2O3–ZnO–glass is alterable by simply selecting the thickness of the Al2O3 layer. Promoted diffusion of the Zn atoms enables to fabricate porous planar ZnO films with pore sizes up to a few hundred nm with an enhanced light scattering ability. These findings offer a promising route to produce porous planar films through in‐depth understanding of diffusivity enhancement in glass–metal oxide couples.  相似文献   

18.
BACKGROUND: Ceramic membranes have received more attention than polymeric membranes for the separation and purification of bio‐products owing to their superior chemical, mechanical and thermal properties. Commercially available ceramic membranes are too expensive. This could be overcome by fabricating membranes using low‐cost raw materials. The aim of this work is to fabricate a low‐cost γ‐Al2O3–clay composite membrane and evaluate its potential for the separation of bovine serum albumin (BSA) as a function of pH, feed concentration and applied pressure. To achieve this, the membrane support is prepared using low‐cost clay mixtures instead of very expensive alumina, zirconia and titania materials. The cost of the membrane can be further reduced by preparing a γ‐alumina surface layer on the clay support using boehmite sol synthesized from inexpensive aluminium chloride instead of expensive aluminium alkoxide using a dip‐coating technique. RESULTS: The pore size distribution of the γ‐Al2O3‐clay composite membrane varied from 5.4–13.6 nm. The membrane was prepared using stable boehmite sol of narrow particle size distribution and mean particle size 30.9 nm. Scanning electron microscopy confirmed that the surface of the γ‐Al2O3–clay composite membrane is defect‐free. The pure water permeability of the support and the composite membrane were found to be 4.838 × 10?6 and 2.357 × 10?7 m3 m?2 s?1 kPa?1, respectively. The maximum rejection of BSA protein was found to be 95%. It was observed that the separation performance of the membrane in terms of flux and rejection strongly depends on the electrostatic interaction between the protein and charged membrane. CONCLUSION: The successively prepared γ‐Al2O3‐clay composite membrane proved to possess good potential for the separation of BSA with high yield and could be employed as a low cost alternate to expensive ceramic membranes. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
Nanoscale alumina/protein gel composite films with 10–50 wt% filler were subjected to scratch testing and compared to micron-scale alumina/protein gel composites. Atomic force microscopy (AFM) was employed to examine the width, depth, and morphology of the as-produced scratches. The results show that the scratch depth in gelatin films and the tearing within the scratch decrease dramatically with the addition of the nanoscale (average particle size, 13 nm) alumina fillers. It was found that refining the particle size distribution of the Al2O3 powder (average particle size, 10 nm, with no particles larger than 70 nm) further reduced the scratch depth and width, while improving the dimensional integrity and surface roughness of the nanocomposites. Aging of the gelatin films improved the intrinsic scratch resistance of both filled and unfilled gelatin films. In comparison, micron-size Al2O3 filler not only increased the scratch width, but also resulted in poor particle dispersion and low transparency of the films. The optical clarity of the nanofilled composites was much higher than that of the composites with micron-size filler.  相似文献   

20.
《Dyes and Pigments》2008,76(3):693-700
Synthesis and the characterization of TiO2:5%Co (green), TiO3:5%Fe (brown-reddish), TiO2:2%Cr (brown), Al2O3:5%Co (blue), Al2O3:5%Fe (brown-reddish) and Al2O3:2%Cr (light green) nanometric pigment powders using polymeric precursor (modified Pechini's method) is reported. Colored thick films were deposited on amorphous quartz substrates by electron beam physical vapor deposition (EB-PVD) using pellets of the pigment powders as target. The evaporation process was carried out in vacuum of 4 × 10−6 Torr and the amorphous quartz substrates were kept at 350 °C during deposition. The TiO2-based pigment powders presented crystalline anatase phase and the Al2O3-based pigment powders showed corundum phase, investigated by X-ray diffraction (XRD). The average particle size of the pigment powders was about 20 nm, measured by scanning electron microscopy with field emission gun (SEM-FEG). Diffuse reflectance spectra and colorimetric coordinates L1, a1, b1 using the CIE-L1a1b1 method are shown for the pigment powders, in the 350–750 nm range. The colored thick films were characterized by transmittance (UV–Vis) and atomic force microscopy (AFM). The average film roughness was ∼5.5 nm and the average grain size obtained in the films was around 75 nm. Films with thickness from 400 nm to 690 nm were obtained, measured by talystep profiler. Transmission spectra envelop method has been used to obtain refractive index and thickness of the Al2O3 colored thick films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号