首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
Study of melt flow properties and mechanical properties of sulfonated butyl rubber ionomers showed that in the case of lithium ionomers addition of zinc stearate lowered obviously the melt viscosity, represented by torque value of a Brabender rheometer, and enhanced tensile strength of the ionomer up to 25% of zinc stearate, while in the case of ethylamine neutralized ionomer addition of zinc stearate lowered the melt viscosity not so obviously as in the case of lithium ionomer and slightly affected the tensile strength. Amine neutralized ionomers exhibited very low permanent sets, while the lithium ionomer showed much higher permanent set, which increased with sulfonate group and amount of zinc stearate added. Increase of neutralization degree below equivalent ratio of 1 significantly raised the melt viscosity and tensile strength. For monovalent cation ionomer, melt viscosity and tensile strength diminished with decreasing ionic potentials, but for divalent cation ionomers with increasing ionic potentials and with decreasing covalent character tensile strength decreased and melt viscosity increased. For different amine neutralized ionomers tensile strength decreased in the following orders: ethylamine > triethylamine > diethylamine; isopropylamine > ethylamine > tertiary butylamine > methylamine; ethylamine > hexylamine > dodecylamine > octadecylamine.  相似文献   

2.
研究了不同金属离子及胺中和的磺化丁基橡胶离聚体的熔融流动性及力学性能。结果表明,随着硬脂酸锌加入量的增加,锂离聚体的熔融黏度降低,拉伸强度增大;随离聚体中磺酸基含量的增加,锂离聚体的熔融黏度和拉伸强度增大。对于一价金属离子中和的离聚体,其熔融黏度及拉伸强度随着离子电位的降低而减小;对于二价金属离子中和的离聚体,随着离子电位的下降及共价性的增加,熔融黏度下降而拉伸强度增大。用胺中和的离聚体,硬脂酸锌的影响较小,未加硬脂酸锌的离聚体具有较高的扯断伸长率及较低的永久变形,是良好的热塑性弹性体;随离聚体中磺酸基含量的增加,乙胺离聚体的拉伸强度增大。对于不同胺中和的离聚体,其拉伸强度按下列顺序依次降低:乙胺,三乙胺,二乙胺;乙胺,己胺,十二胺,十八胺。  相似文献   

3.
A method for the synthesis of novel sulfated ionomer of styrene–butadiene–styrene triblock copolymer (SBS) was developed. SBS was first epoxidized by performic acid in the presence of a phase‐transfer catalyst; this was followed by a ring‐opening reaction with an aqueous solution of alkali salt of bisulfate. The optimum conditions for the ring‐opening reaction of the epoxidized SBS with an aqueous solution of KHSO4 were studied. During the ring‐opening reaction, both phase‐transfer catalyst and ring‐opening catalyst were necessary to enhance the conversion of epoxy groups to ionic groups. The products were characterized with Fourier transform infrared spectrophotometry and transmission electron microscopy (TEM). After the potassium ions of the ionomer were substituted with lead ions, the lead sulfated ionomer exhibited dark spots under TEM. Some properties of the sulfated ionomer were studied. With increasing ionic groups or ionic potential of the cations, the water absorbency and emulsifying volume of the ionomer and the intrinsic viscosity of the ionomer solution increased, whereas the oil absorbency decreased. The sulfated ionomer possessed excellent emulsifying properties compared with the sulfonated SBS ionomer. The sodium sulfated ionomers in the presence of 10% zinc stearate showed better mechanical properties than the original SBS. When the ionomer was blended with crystalline polypropylene, a synergistic effect occurred with respect to the tensile strength. The ionomer behaved as a compatibilizer for blending equal amounts of SBS and oil‐resistant chlorohydrin rubber. In the presence of 3% ionomer, the blend exhibited much better mechanical properties and solvent resistance than the blend without the ionomer. SEM photographs indicated improved compatibility between the two components of the blend in the presence of the ionomer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Ionomers, containing both carboxylate and sulfonate anions on the polymer backbone, based on metal cations like Mg+2 and Ba+2 were prepared by sulfonating maleated styrene‐ethylene/butylene‐styrene block copolymer, hereafter referred to as m‐SEBS, followed by its neutralization by metal acetates. Infrared spectroscopic studies reveal that sulfonation reaction takes place in the para position of the benzene rings of polystyrene blocks and metal salts are formed on neutralization of the precursor acids. Dynamic mechanical thermal analyses show that sulfonation causes increase in Tg of the rubbery phase of m‐SEBS and decrease in tan δ at Tg of the hard phase, along with formation of a rubbery plateau. The changes become more pronounced on neutralization of the sulfonated maleated SEBS, and the effect is greater in the case of Ba salt. Dielectric thermal analyses (DETA) show that incorporation of ionic groups causes profound changes in the dielectric constant (ϵ′) of m‐SEBS. In addition to the low temperature glass–rubber transition, the plot of ϵ′ vs. temperature shows occurrence of a high‐temperature transition, also known as the ionic transition. Activation energy for the dielectric relaxation could be determined on the basis of frequency dependence of the ionic transition temperature. Two values of the activation energy for the dielectric relaxation refer to the presence of two types of ionic aggregates, namely multiplets and clusters. Incorporation of the ionic groups causes enhancement in stress–strain properties as well as retention of the properties at elevated temperatures (50° and 75°C), and the effect is more pronounced in the case of Ba ionomer. Although sulfonated ionomers show greater strength than the carboxylated ionomers, the sulfonated maleated ionomers show higher stress–strain properties in comparison to both sulfonated and carboxylated ionomers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 816–825, 2000  相似文献   

5.
A novel method for the preparation of a quaternary ammonium ionomer of styrene–butadiene–styrene triblock copolymer (SBS) was developed by a ring‐opening reaction of epoxidized SBS with triethylamine hydrochloride in the presence of a phase transfer catalyst. The optimum conditions were studied. The ionomer was characterized by quantitative analysis, IR spectroscopy, and 1H‐NMR spectroscopy. Its water absorbency, oil absorbency, dilute solution viscosity, and use as a compatibilizer for the blending of SBS and chlorosulfonated polyethylene (CSPE) were investigated. The results showed that, under optimum conditions, the epoxy groups can be completely converted to the quaternary ammonium groups. The IR spectrum did not exhibit the absorption peak for quaternary ammonium groups, whereas the 1H‐NMR spectrum and titration method demonstrated it. With increasing ionic group content, the water absorbency of the ionomer increased whereas its oil absorbency decreased. These indicated the amphiphilic character of the SBS ionomer. The dilute solution viscosity of the ionomer in toluene/methanol (9/1) solvent increased with increasing quaternary ammonium group content. The ionomer was used as a compatibilizer for the blends of SBS and CSPE. The addition of a small amount of the ionomer to the blend enhanced the mechanical properties of the blends: 2 wt % ionomer based on the blend increased the tensile strength and ultimate elongation of the blend nearly 2 times. The blends of equal parts SBS and CSPE behaved as oil‐resistant thermoplastic elastomers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1975–1980, 2006  相似文献   

6.
The present study aimed to investigate the effects of plasticization on the mechanical properties and morphology of poly(ethyl acrylate) ionomers neutralized with either Co2+ or Na+. In experiments, the dynamic mechanical properties of divalent Co2+-neutralized poly(ethyl acrylate) ionomers containing polar and non-polar plasticizers were compared with those of the monovalent Na+-neutralized ionomers. In the case of the ionomers plasticized with non-polar 4-decylaniline (4-DA), residing in non-ionic regions, the matrix and cluster Tgs of the ionomer decreased with increasing 4-DA contents. The decreasing rates of the matrix and cluster Tgs were found to be similar at 0.8 and 1.0 °C/(wt% of 4-DA) for the Co2+ and Na+ ionomers, respectively. The ionic modulus of the Co2+ ionomer changed only slightly with increasing 4-DA contents, but that of the Na+ ionomer decreased noticeably. In the SAXS study, it was observed that the un-plasticized Co2+ ionomer showed a strong small angle upturn and a very broad SAXS peak, indicating that the ionomer phase was compositionally heterogeneous. The plasticization of the Co2+ ionomer with 4-DA, however, induced a well-developed SAXS peak that was comparable to that of the un-plasticized Na+ ionomer. These results suggested that the addition of 4-DA to the Co2+ ionomer made the ionomer have more multiplets at a prevalent distance, leading to more clustering. In the case of the Co2+ ionomers plasticized with polar glycerol (Gly) that acted mainly as multiplet plasticizer, a very weak cluster glass transition, decreasing ionic modulus and only a well-developed small angle upturn were observed. These indicated that the addition of Gly to the Co2+ ionomer disrupted the multiplet formation, resulting in lower clustering.  相似文献   

7.
The effects of the degree of neutralization of the acid groups and, to some extent, the precursor melt index on the thermal, rheological, and mechanical properties of two series of poly(ethylene-co-methacrylic acid) (EMAA) ionomers, one based on sodium (Na+) cations and one based on potassium cations (K+), were examined. Differential scanning calorimetry (DSC) and modulus results indicate that the secondary crystallization of the ionomers is generally completed 21 days after melt processing. DSC results indicate that the extent of crystallization increases with increasing neutralization level. The mechanical relaxation seen by dynamic mechanical analysis (DMA) in the vicinity of the secondary crystal melting point shifts to higher temperatures as the neutralization level increases. The rheological properties increase with decreasing precursor melt index and with increasing neutralization level to a lesser extent. The ionomer modulus and yield strength increase with increasing neutralization level up to 40% neutralization and then plateau or slightly decrease with further neutralization. The plateaus/maxima may be the result of an optimal spacing of alkaline ions and carboxyl groups within ionic groups at neutralization levels near 33%. The elongation at break and the Izod impact strength decrease with increasing neutralization. The modulus, yield stress, and impact strength are generally lowest for the ionomers with the highest precursor melt index.  相似文献   

8.
某些磺化乙丙橡胶离聚体的加工及力学性能   总被引:3,自引:0,他引:3  
  相似文献   

9.
Zinc-neutralized sulfonated EPDM ionomers (Zn-SEPDM) were prepared by batch and continuous melt sulfonation processes, and the ionomer products were compared with ionomers synthesized by sulfonation of EPDM in homogeneous solution. The efficiency of a batch melt sulfonation using an intensive mixer as a reactor was comparable to that of the solution sulfonation process, but the efficiency of the melt sulfonation in a twin-screw extruder was considerably lower, which was thought to be a consequence of a relatively short reaction residence time due to limitations of the equipment. Melt neutralization was not complete, which produced a dark colored product. However, the incomplete neutralization and the color of the product did not affect the mechanical properties of the melt sulfonated ionomers, which were comparable to those of ionomers made by conventional solution sulfonation. The metal sulfonate concentration alone determined the mechanical properties of the ionomer. Melt sulfonation of Zn-SEPDM ionomers by batch or continuous melt processes appears to be a practical alternative to solution sulfonation, but further optimization of the melt sulfonation processes is needed to ensure uniform sulfonation and complete neutralization.  相似文献   

10.
Nanocomposites were prepared by melt blending various sodium (Na+) and potassium (K+) ionomers formed from poly(ethylene-co-methacrylic acid) and the M2(HT)2 organoclay formed from montmorillonite (MMT). The effects of the neutralization level of the acid groups and the precursor melt index on the morphology and properties of the nanocomposites were evaluated using stress-strain analysis, wide angle X-ray scattering (WAXS), and transmission electron microscopy (TEM) coupled with particle analysis. The aspect ratio generally increases as the neutralization level increases, except for Na+ ionomer nanocomposites with neutralization levels >50%. It appears from both WAXS and TEM analyses that Na+ ionomer nanocomposites have higher levels of MMT exfoliation and particle orientation in the flow direction than K+ ionomer nanocomposites. DSC results indicate that the level of crystallinity in the Na+ ionomers generally increases slightly with MMT addition, while the crystallinity in the K+ ionomers decreases slightly with MMT addition. The relative modulus of K+ ionomer nanocomposites increases as the degree of neutralization increases. The relative moduli of Na+ ionomer nanocomposites are higher than the relative modulus of K+ ionomer nanocomposites, likely due to the increased crystallinity of the Na+ ionomers and the decreased crystallinity of the K+ ionomers upon addition of MMT, the higher exfoliation levels measured by the aspect ratios and the particle densities, and the higher particle orientation indicated by TEM and WAXS. The relative modulus generally increases as the aspect ratio increases. The elongation at break generally decreases as the MMT content increases and as the neutralization level increases for both ionomer types. The fracture energy of most of the ionomers increases with the addition of MMT, reaches a maximum between 2.5 and 5 wt% MMT, and then decreases upon further MMT addition.  相似文献   

11.
赵巍  谢洪泉 《弹性体》2008,18(2):42-46
环氧化SBS在甲苯中与磷酸氢二钠水溶液,以N,N-二甲基苯胺及四乙基溴化铵为催化剂,通过开环反应合成了含磷酸二钠基的两亲性SBS离聚体。离聚体采用FTIR进行表征。研究了开环反应条件及该离聚体的乳化性、吸水性、耐油性和稀溶液粘度。结果表明开环率可以达到32%,该离聚体具有很好的乳化性、明显的吸水性和耐油性,其乳化性、吸水性、耐油性及稀溶液粘度随离子含量增加而增大,随一价阳离子的离子电位增加而增加。  相似文献   

12.
Terpolymers with uniform poly(methyl methacrylate) (PMMA) grafts were prepared by terpolymerization of PMMA macromonomer, butyl acrylate, and acrylic acid in benzene using AIBN as initiator. During terpolymerization the macromonomer polymerizes faster than the monomers at the beginning but slower at the latter stage. The terpolymers were purified by solvent extraction and fractional precipitation. The average grafting number per chain of the terpolymers was determined to be 3–8. Ionomers were obtained by neutralization of the terpolymers with alkali hydroxide or metallic acetate. Dynamic mechanical spectrum of the ionomer shows the existence of two Tg's, which implies the occurence of microphase separation. The ionomer exhibits high damping over a temperature range from ?25 to 100°C. Both PMMA grafts and metallic carboxylate content raise the tensile strength of the ionomer and lower the ultimate elongation. The tensile strength of ionomers neutralized with different metallic ions decreases in the following order: Pb2+ > Zn2+ > Na+ > Ca2+ > Mg2+ > K+. The ionomers with uniform PMMA grafts show much better mechanical properties than the terpolymer without neutralization or the ionomer without PMMA grafts.  相似文献   

13.
The composites of polyaniline (PAn) and zinc sulfonated ethylene–propylene–diene rubber (EPDM) ionomer were made by polymerization of aniline in the presence of the ionomer by using a direct, one‐step in situ emulsion polymerization technique. The ionomers were prepared by sulfonation of EPDM rubber with acetyl sulfate in petroleum ether, followed by neutralization with zinc acetate solution. The ionomers with sulfonate contents of 10, 24, and 42 mmol SO3H/100 g were used for preparation of PAn/ionomer composites. The in situ polymerization of aniline was carried out in an emulsion comprising water and xylene containing the ionomer in the presence of dodecyl benzene sulfonic acid, acting as both a surfactant and a dopant for PAn. The composite was characterized by IR and WAXD. The composite obtained can be processed by melt method. The conductivity of the composite with lower sulfonate content was higher than that with higher sulfonate content. Conductivity of the composites exhibits a percolation threshold at about 13 wt % PAn. When the sulfonated content is 10 or 24 mmol SO3H/100 g and PAn content is 4–10 wt %, the composites behave as a thermoplastic elastomers with high ultimate elongation and low permanent set. The conductivity of the composite after secondary doping with m‐cresol is higher than the composite before secondary doping by about one order. Addition of zinc stearate as an ionic plasticizer lowers both the conductivity and the mechanical strength of the composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2211–2217, 2004  相似文献   

14.
The gelation of polyisobutylene-based model ionomers with-S03 K+ terminal groups has been studied in hexane at 25°C. Both molecular architecture and molecular weight were found to significantly influence the concentration at which gelation occurs. Specifically, three-arm star trifunctional ionomers gel at lower concentrations than linear difunctional ionomers of similar molecular weight. In addition, the gelation concentration decreases with increasing molecular weight for the three-arm star trifunctional ionomer, but the results do not fit the relationship reported previously which relates gelation concentration and molecular weight for carboxylated linear telechelic polymers.  相似文献   

15.
A novel method for synthesizing maleate ionomer of (styrene‐co‐butadiene) rubber (SBR) from epoxidized SBR was developed. The epoxidized SBR was prepared via epoxidation of SBR with performic acid formed in situ by H2O2 and formic acid in cyclohexane. The maleated ionomer was obtained by ring‐opening reaction of the epoxidized SBR solution with an aqueous solution of potassium hydrogen maleate. The optimum conditions were studied. It was found that it is necessary to use phase transfer catalyst and ring‐opening catalyst for enhancing the epoxy group conversion. To obtain 100% conversion addition of dipotassium maleate is important. The product was characterized by FTIR spectrophotometry and transmission electron microcroscopy (TEM). The results showed that the product was really an ionomer with domains of maleate ionic groups. Some properties of the ionomer, such as water absorbency, oil absorbency and dilute solution behavior were studied. With increasing ionic groups, the water absorbency of the ionomer increases, whereas the oil absorbency decreases. The dilute solution viscosity of the ionomer increases abruptly with increasing ionic group content. The ionomer can be used as a compatibilizer for the blends of SBS and chlorosulfonated polyethylene (CSPE). Addition of a small amount of the ionomer to the blend can enhance the mechanical properties of the blends. 3 wt % ionomer based on the blend can increase the tensile strength and ultimate elongation of the blend nearly twice. The compatibility of the blends enhanced by adding the ionomer was shown by scanning electron microscopy. The blend of equal parts of SBS and CSPE compatibilized by the ionomer behaves as an oil resistant thermoplastic elastomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 792–798, 2006  相似文献   

16.
High styrene rubber ionomers were prepared by sulfonating styrene–butadiene rubber of high styrene content (high styrene rubber) in 1,2‐dichloroethane using acetyl sulfate reagent, followed by neutralization of the precursor acids using methanolic zinc acetate. The ionomers were characterized using X‐ray fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), dynamic mechanical analysis (DMA), and also by the evaluation of mechanical properties. The FTIR studies of the ionomer reveal that the sulfonate groups are attached to the benzene ring. The NMR spectra give credence to this observation. Results of DMA show an ionic transition (Ti) in addition to glass–rubber transition (Tg). Incorporation of ionic groups results in improved mechanical properties as well as retention of properties after three cycles of processing. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2294–2300, 2002  相似文献   

17.
Dispersions of cationic and anionic ionomers of polyurethanes were prepared by the acetone method. Characteristic changes of the viscosity were observed during the addition of water. This change was studied with a cationic ionomer. The ionomers are mainly associated dimeric species in solution of acetone. During the addition of water the ions are solvated while the hydrophobic segments are increasingly associated. At the maximum of the observed viscosity the apparent molecular weight Mmax ≈ 3 Mmin. In the absence of solvents the ionomers behave like crosslinked materials even if no covalent crosslinks are present. The modulus at small elongations is a linear function of the square of the concentration of the cations. It is concluded that two ionic centers are required per crosslink. The anionic ionomers were also chemically crosslinked since an excess of isocyanate was used. A linear increase of the modulus was observed with increasing amount of chemical crosslinks, while the concentration of ions and hydrogen bonds was constant. The crosslinks formed by ions can be suspended by swelling with water. The portion of the modulus caused by ionic crosslinking can be computed from the difference of the moduli in the dry and swollen state.  相似文献   

18.
A scheme was developed for producing poly(ethylene terephthalate (PET) ionomer)/silicate hybrid materials via polymer–in situ sol‐gel reactions for tetraethylorthosilicate (TEOS) using different solvents. Scanning electron microscopy/EDAX studies revealed that silicate structures existed deep within PET ionomer films that were melt pressed from silicate‐incorporated resin pellets. 29Si solid‐state NMR spectroscopy revealed considerable Si—O—Si bond formation, but also a significant fraction of SiOH groups. 23Na solid‐state NMR spectra suggested the presence of ionic aggregates within the unfilled PET ionomer, and that these aggregates do not suffer major structural rearrangements by silicate incorporation. For an ionomer treated with TEOS using MeCl2, Na+ ions are less associated with each other than in the unfilled control, suggesting silicate intrusion between PET–SO Na+ ion pair associations. The ionomer treated with TEOS + tetrachloroethane had more poorly formed ionic aggregates, which illustrates the influence of solvent type on ionic aggregation. First‐scan DSC thermograms for the ionomers demonstrate an increase in crystallinity after the incorporation of silicates, but solvent‐induced crystallization also appears to be operative. Second‐scan DSC thermograms also suggest that the addition of silicate particles is not the only factor implicated in recrystallization, and that solvent type is important even in second‐scan behavior. Silicate incorporation does not profoundly affect the second scan Tg vs. solvent type, i.e., chain mobility in the amorphous regions is not severely restricted by silicate incorporation. Recrystallization and melting in these hybrids appears to be due to an interplay between a solvent‐induced crystallization that strongly depends on solvent type and interactions between PET chains and in situ‐grown, sol‐gel‐derived silicate particles. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1749–1761, 2002; DOI 10.1002/app.10586  相似文献   

19.
用环氧化(苯乙烯-丁二烯-苯乙烯)嵌段共聚物(SBS)开环反应合成了含顺丁烯二酸钾基的SBS离聚体,考察了离子基团不同含量对含顺丁烯二酸钾基的SBS离聚体力学性能的影响,研究了离聚体/聚丙烯(PP)共混物的力学性能和耐溶剂性能,以及离聚体对氯醇橡胶(CHR)/SBS共混物的增容效果。结果表明,该离聚体呈现热塑性弹性体行为;随着离子基团含量的增加,离聚体的拉伸强度及扯断伸长率增大,但当离子基团含量超过1.69mmol/g时,离聚体的力学性能又有所下降,离子基团最佳含量为1.23~1.69mmol/g;该离聚体与PP共混,在拉伸强度方面呈现协同效应;离聚体作为增容剂提高了SBS与CHR的相容性,当离聚体质量分数为3%时,力学性能达到最佳,共混物的耐溶剂性能也得到了改善。  相似文献   

20.
在甲苯/环己烷混合溶剂体系中考察了顺酐化苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)的制备条件,得到马来酸酐/SBS/过氧化苯甲酰质量比为30/100/1、SBS质量浓度为0.10 g/mL、过氧化苯甲酰/甲苯引发液的滴加时间为10 min及75 ℃下反应4 h的较为理想的反应条件.在此条件下既可以避免凝胶的生成,又可获得较高的接枝率(6.87%).所得顺酐化SBS经氢氧化钠溶液中和后生成钠离聚体,傅里叶变换红外光谱分析证实接枝反应和离聚体的合成均得到预期的产物.差示扫描量热分析结果表明离子化微区的存在使得离聚体在高温段有1个玻璃化转变温度.离聚体的拉伸强度、搭接剪切强度和乳化性能均随顺酐化程度的提高而改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号