共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxy‐terminated polybutadiene was functionalized with isocyanate groups and employed in preparation of a block copolymer of polybutadiene and bisphenol A diglycidyl ether (DGEBA)‐based epoxy resin. The block copolymer was characterized by Fourier transform infrared (FTIR) spectroscopy and size‐exclusion chromatography (SEC). Cured blends of epoxy resin and hydroxy‐terminated polybutadiene (HTPB) or a corresponding block copolymer were characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMTA), and scanning electron microscopy (SEM). All modified epoxy resin networks presented improved impact resistance with the addition of the rubber component at a proportion up to 10 wt % when compared to the neat cured resin. The modification with HTPB resulted in milky cured materials with phase‐separated morphology. Epoxy resin blends with the block copolymer resulted in cured transparent and flexible materials with outstanding impact resistance and lower glass transition temperatures. No phase separation was discernible in blends with the block copolymer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 838–849, 2002 相似文献
2.
Considering the properties of silicon rubber, ethylene–propylene–diene monomer (EPDM), and cis‐polybutadiene rubber (BR), a blend made by a new method was proposed in this article; this blend had thermal resistance and good mechanical properties. The morphology of the blend was studied by SEM, and it was found that the adhesion between the phases of BR, EPDM, and polysiloxanes (silicon rubber) could be enhanced, and the compatibility and covulcanization were good. The influence of the mass ratio of peroxide and silica on the mechanical properties and thermal resistance of the blend was studied. The results showed that the mechanical properties and thermal resistance of the blend were improved when silicon rubber/BR/EPDM was 20/30/50, dicumyl peroxide/sulfur was 2.5/2.5, and the amount of silica was 80 phr. The integral properties of rubber blend had more advantages than did the three rubbers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4462–4467, 2006 相似文献
3.
Nano‐to‐submicron sized particles of zinc oxide (ZnO) were synthesized by low temperature hydrolysis method. Organo‐ZnO was also synthesized by the aforementioned method in presence of polyethylene glycol (PEG‐2000). The synthesized ZnO particles were characterized by infra‐red spectroscopy, X‐ray diffraction, BET surface area, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). FTIR showed that PEG was present on the ZnO surface. Organo‐ZnO exhibited floral‐shape morphology consisting of concentric nanorods. The average diameter of the nanorods was ~ 250 nm as evident from SEM. TEM showed that the nanorods were made of ~ 50 nm sized small particles. UV‐absorbance property of ZnO was unaltered even after organic coating. Curing, physico‐mechanical and thermal properties of polybutadiene rubber compounded with organo‐ZnO were compared with those of standard commercial rubber grade ZnO and nano‐ZnO prepared by high and low temperature methods. The cure‐characteristics were studied with the help of moving die rheometer as well as differential scanning calorimetry (DSC). Crosslink‐density measurement along the DSC vulcanization exotherm showed better cure efficiency of organo‐ZnO. Organo‐ZnO containing compound exhibited better mechanical and thermal properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
4.
Six blend samples were prepared by the physical mixing of epoxidized resole (EDR) with different weight ratios of carboxyl‐terminated polybutadiene (CTPB) liquid rubber ranging from 0 to 25 wt % in intervals of 5 wt %. The formation of various reaction products during the curing of unblended EDR and CTPB‐blended EDR were studied with Fourier transform infrared spectroscopy. The curing time at 100°C for the blend sample containing 15 wt % CTPB was the least among all of the blend samples. This blend sample, also, showed the highest initial degradation temperature, as obtained from thermogravimetric analysis thermograms, which indicated that it was the most thermally stable matrix system. The films of coatings based on the blend of EDR with 15 wt % CTPB offered the highest resistance toward different concentrations of acids and alkalis compared to the films having 5, 10, 20, and 25 wt % CTPB in the EDR/CTPB blends. Solvents showed almost the same behavior as acids and alkalis for these films except for hydrocarbon solvents such as mineral turpentine oil, toluene, and xylene. The resistance toward these solvents was poor and slightly inferior to those found with EDR unblended with CTPB. The tensile, flexural, and impact strengths of the molded specimens derived from the EDR/CTPB blends initially increased up to 15 wt % CTPB addition in the blend and then decreased, whereas the elongation at break remained constant for all blend compositions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1802–1808, 2006 相似文献
5.
In this article, phenolic nanocomposites were prepared using styrene–butadiene rubber (SBR) nanoparticles with an average particle size of about 60 nm as the toughening agent. The mechanical and thermal properties of phenolic nanocomposites and the toughening mechanism were studied thoroughly. The results showed that when adding 2.5 wt % SBR nanoparticles, the notched impact strength of phenolic nanocomposites reached the maximum value and was increased by 52%, without sacrificing the flexural performance. Meanwhile, SBR nanoparticles had no significant effect on the thermal decomposition temperature of phenolic nanocomposites. The glass‐transition temperature (Tg) of phenolic nanocomposites shifted to a lower temperature accompanying with the increasing Tg of loaded SBR, which showed there was a certain compatibility between SBR nanoparticles and phenol‐formaldehyde resin (PF). Furthermore, the analysis of Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy indicated that there existed a weak chemical interaction between SBR nanoparticles and the PF matrix. The certain compatibility and weak chemical interaction promoted the formation of a transition layer and improved the interfacial bonding, which might be important reasons for the great enhancement of the toughness for phenolic nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41533. 相似文献
6.
By the oxidation of liquid poly(1,2‐butadiene) (LPB) with H2O2/HCOOH, epoxidate poly(1,2‐butadiene) (ELPB) was obtained as a toughening agent to prepare diglycidyl ether bisphenol‐A (DGEBA) epoxy composites by using V115 polyamide(PA) as a cross‐linking agent. DGEBA, ELPB, and the composites were effectively cured by PA at 100°C for 2 h followed by postcuring at 170°C for 1 h. Thermal gravimetric analysis results in air and nitrogen atmosphere showed that the thermal stability of composites could be improved by the addition of ELPB. Compared with DGEBA/PA, the composites exhibited a decrease in strength at yield but an increase in strain at break with the increase in ELPB amount. The composite with 10% ELPB exhibited both thermal stability and tenacity superior to those of DGEBA/PA and composites with 5 and 20% ELPB, respectively. The improvements in thermal and mechanical properties of composites depended on the formation of Inter Penetrating Networks (IPN) among DGEBA/PA/ELPB and their distributions in the matrix. At an appropriate ELPB amount, the IPN, mostly made of DGEBA/PA/ELPB, may be distributed more evenly in the matrix; less ELPB resulted in the formation of IPN mainly made of DGEBA/PA; excessive addition of ELPB resulted in the local aggregation of ELPB/PA and phase separations. The toughening mechanism was changed from chemically forming IPN made of DGEBA/PA/ELPB to physically reinforcing DGEBA/PA by ELPB/PA with the increase in ELPB addition. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
7.
Kung‐Chin Chang Chang‐Yu Lin Hui‐Fen Lin Sheng‐Che Chiou Wan‐Chun Huang Jui‐Ming Yeh Jen‐Chang Yang 《应用聚合物科学杂志》2008,108(3):1629-1635
In this article, a series of hybrid materials consisted of epoxy resin matrix and well‐dispersed amino‐modified silica (denoted by AMS) nanoparticles were successfully prepared. First of all, the AMS nanoparticles were synthesized by performing the conventional acid‐catalyzed sol–gel reactions of tetraethyl orthosilicate (TEOS), which acts as acceded sol–gel precursor in the presence of 3‐aminopropyl trimethoxysilane (APTES), a silane coupling agent molecules. The as‐prepared AMS nanoparticles were then characterized by FTIR, 13C‐NMR, and 29Si‐NMR spectroscopy. Subsequently, a series of hybrid materials were prepared by performing in situ thermal ring‐opening polymerization reactions of epoxy resin in the presence of as‐prepared AMS nanoparticles and raw silica (RS) particles (i.e., pristine silica). AMS nanoparticles were found to show better dispersion capability in the polymer matrices than that of RS particles based on the morphological observation of transmission electron microscopy (TEM) study. The better dispersion capability of AMS nanoparticles in hybrid materials was found to lead enhanced thermal, mechanical properties, reduced moisture absorption, and gas permeability based on the measurements of thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and gas permeability analysis (GPA), respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
8.
Temperature effects on rigid nano‐silica and soft nano‐rubber toughening in epoxy under impact loading 下载免费PDF全文
The rigid nano‐silica and soft nano‐rubber toughening effects on neat epoxy under impact loading in a range of ?50 to 80 °C were investigated. Nanosilica particles (20 nm) toughened neat epoxy at all temperatures with a maximum toughening efficiency at ?50 °C and lower efficiency at elevated temperatures. In contrast, except at ?50 °C, nano‐rubber particles (100 nm) showed the deterioration effect on the impact fracture toughness of epoxy resin. Scanning electron microscopy examinations revealed that the crack pinning and local epoxy deformation induced by rigid particles in term of nano‐silica/epoxy and nano‐rubber/epoxy interfacial debonding (at ?50 °C) led to positive toughening efficiency on neat epoxy. However, at 20 and 80 °C, the rubber cavitations/void plastic growth was significantly suppressed under the impact loading, which led to the negative toughening efficiency on epoxy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45319. 相似文献
9.
A liquid diglycidyl ether of bisphenol A (DGEBA) epoxy resin is blended in various proportions with amine‐terminated polyoxypropylene (POPTA) and cured using an aliphatic diamine hardener. The degree of crosslinking is varied by altering the ratio of diamine to epoxy molecules in the blend. The mixture undergoes almost complete phase separation during cure, forming spherical elastomer particles at POPTA concentrations up to 20 wt %, and a more co‐continuous morphology at 25 wt %. In particulate blends, the highest toughness is achieved with nonstoichiometric amine‐to‐epoxy ratios, which produce low degrees of crosslinking in the resin phase. In these blends, the correlation between GIC and plateau modulus (above the resin Tg), over a wide range of amine‐to‐epoxy ratios, confirms the importance of resin ductility in determining the fracture resistance of rubber‐modified thermosets. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 427–434, 1999 相似文献
10.
Diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin was modified using liquid carboxyl-terminated poly(butadiene-co-acrylonitrile) (CTBN) rubber. The liquid CTBN contents used ranged from 2.5 to 20 parts per hundred parts of resin (phr). Mechanical properties of the modified resins were evaluated and the microstructures of the fracture surfaces were examined using SEM technique. The changes in storage modulus and the glass transition temperature were also evaluated using dynamic mechanical analysis (DMA). The tribological tests were performed using a ball-on-disc tribometer. The worn surfaces and the ball counter-mates after tribological tests were investigated using optical microscope technique. The results revealed the influence of liquid CTBN content on mechanical and tribological properties, and also microstructure of the modified epoxy resins. Impact resistance increased whereas the storage modulus and the hardness decreased when the CTBN rubber was introduced to the epoxy network. The coefficient of friction of the CTBN-modified epoxy was lower than that of the neat epoxy. The CTBN content of lower than 10 phr was recommended for improving the wear resistance of epoxy resin. Changes in tribological properties of the CTBN-modified epoxy correspond well to those in mechanical changes, especially the toughness properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
11.
12.
The carboxyl‐terminated butadiene‐a‐acrylonitrile rubber (CTBN) has been proved to be the most effective toughener for cyanate ester (CE) resin. This work mainly focuses on the different modification effects caused by the addition of CTBN with different acrylonitrile content. The phase separation, morphology of fracture surface, and physical properties of the blends are studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic mechanic analysis (DMA), and thermogravimetric analysis (TGA). It is testified that the compatibility and toughness between CE and CTBN had a positive correlation with the acrylonitrile content of CTBN. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
13.
Synthetic rubber/thermoplastic blends were electrospun from their solutions. The rubber was a solid acrylonitrile/butadiene/acrylic acid copolymer and the thermoplastic was polyacrylonitrile. The aims of this study were to identify suitable systems and processing conditions for obtaining rubber-based electrospun nanofibers, to investigate the ability of an epoxy resin system to impregnate and swell selected hybrid rubber/thermoplastic mats, and to assess the impact of the nanofibers on the resin morphology and curing behavior. In particular, electrospinning trials were carried out varying the composition of the feed solution and process parameters, such as the applied voltage, the flow rate, and tip-to-collector distance. The morphology of the hybrid mats was characterized by scanning electron microscopy and their thermal properties by thermogravimetry. An epoxy resin-mat monolayer was also prepared and its fracture surface inspected; both rubber nanoparticles and PAN nanofibers were evident. The highly corrugated fracture surfaces suggest activation of local epoxy-resin toughening mechanisms. Altogether, the results encouraged the application of hybrid mats as interleaves in high-performance carbon/epoxy composites to contrast delamination. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48501. 相似文献
14.
端羟基聚丁二烯液体橡胶老化性能研究 总被引:1,自引:0,他引:1
研究了不同防老剂种类及用量,不同环境温度条件下,端羟基聚丁二烯(HTPB)液体橡胶粘度变化规律。结果表明,加入防老剂,尤其是2246可以显著改善HTPB的老化性能,且防老剂2246最佳用量为0.2% ̄0.5%,室温下,HTPB不加防老剂的贮存期长达1年。 相似文献
15.
Clays belong to an economic class of fillers, which are used extensively in rubbers and plastics. Being nonreinforcing in nature, there are limitations upon its use. If the properties of filler are modified, it will get a higher value as a filler. To achieve this modification of surface properties is one of the avenues. In the present work, the effect of treatment of the coupling agent on clay has been studied, with polybutadiene as a matrix. Composites were made with a varying proportion of untreated and treated clay. A two‐roll mill was used for dispersing the filler in the rubber, and a compression‐molding technique was used to cure the compounded in sheet forms. Tensile properties were measured on a computerized UTM using the ASTM procedure. Comparison of properties of composites filled with treated and untreated clay established that treatment of clay imparts better reinforcing properties. The properties under consideration were tensile strength, modulus at 100 and 400%, Young's modulus, hardness, etc. Tensile strength was improved by 52%, while modulus at 400% was improved by 150%. Similarly Young's modulus also was improved by 27%. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1299–1304, 2004 相似文献
16.
In this study, PEL [copolymer of poly(propylene) oxide (PPO) and poly(ethylene oxide) (PEO)] toughening epoxy resin with ionic charge was used to produce an interpenetrating action between the cross‐linking network structure of the epoxy resin and the PEL additive. Fourier transform infrared (FTIR) analysis of the toughening epoxy resin revealed that ? NCO disappeared at 2400 cm?1, ? NH appeared at 3300 cm?1, and ? C?O appeared at 1750 cm?1. These results indicate that a urethane bond was produced. Dynamic mechanical analysis (DMA) and mechanical testing results indicated that as the level of PEL increased, the compatibility between the epoxy resin and PEL also increased. In addition, the compatibility was improved because the addition of cornate hardener produced a graft phenomenon. The tensile property, impact strength, and fracture toughness of PEL toughening epoxy resin all had a tendency to improve. The tensile strength, impact strength, and fracture toughness (KIC value) were most improved when 30 phr cornate was added. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3740–3751, 2002 相似文献
17.
The aim of this research was to investigate the behaviors of epoxy resin blended with epoxidized natural rubber (ENR). ENRs were prepared via in situ epoxidation method so that the obtained ENRs contained epoxide groups 25, 40, 50, 60, 70, and 80 mol %. The amounts of ENRs in the blends were 2, 5, 7, and 10 parts per hundred of epoxy resin (phr). From the results, it was found that the impact strength of epoxy resin can be improved by blending with ENRs. Tensile strength and Young's modulus were found to be decreased with an increasing amount of epoxide groups in ENR and also with an increasing amount of ENR in the blends. Meanwhile, percent elongation at break slightly increased when ENR content was not over 5 phr. In addition, flexural strength and flexural modulus of the blends were mostly lower than the epoxy resin. Scanning electron microscope micrograph of fracture surface suggested that the toughening of epoxy resin was induced by the presence of ENR globular nodules attached to the epoxy matrix. TGA and DSC analysis revealed that thermal decomposition temperature and glass transition temperature of the samples were slightly different. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 452–459, 2006 相似文献
18.
Synthesis and performance of a novel nitrogen‐containing cyclic phosphate for intumescent flame retardant and its application in epoxy resin 下载免费PDF全文
A novel nitrogen‐containing cyclic phosphate (NDP) was synthesized and well characterized by 1H, 13C, 31P NMR, mass spectra and elemental analysis. NDP was used as an additive intumescent flame retardant (AIFR) to impart flame retardancy and dripping resistance for diglycidyl ether of bisphenol‐A epoxy resin (DGEBA) curied by 4,4′‐diaminodiphenylsulfone (DDS) with different phosphorus content. The flammability, thermal stability, and mechanical properties of NDP modified DGEBA/DDS thermosets were investigated by UL‐94 vertical burning test, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Izod impact strength and flexural property tests. The results showed that NDP modified DGEBA/DDS thermosets exhibited excellent flame retardancy, moderate changes in glass transition temperature and thermal stability. When the phosphorus content reached only 1.5 wt %, the NDP modified DGEBA/DDS thermoset could result in satisfied flame retardancy (UL‐94, V‐0). The TGA curves under nitrogen and air atmosphere suggested that NDP had good ability of char formation, and there existed a distinct synergistic effect between phosphorus and nitrogen. The flame retardant mechanism was further realized by studying the structure and morphology of char residues using FT‐IR and scanning electron microscopy (SEM). It indicated that NDP as phosphorus‐nitrogen containing flame retardant worked by both of the condensed phase action and the vapor phase action. Additionally, the addition of NDP decreased slightly the flexural strength of the flame retarded DGEBA epoxy resins, and increased the Izod impact strength of these thermosets. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41859. 相似文献
19.
丙烯酸酯液体橡胶的合成及其增韧环氧树脂的研究进展 总被引:1,自引:0,他引:1
综述了反应性丙烯酸酯液体橡胶的合成方法及其用丙烯酸酯液体橡胶增韧环氧树脂的研究进展。其合成方法以溶液聚合为好,聚合产物以三元共聚物为好。增韧效果与体系的相态结构、化学键合和环氧基体的延展性有关。 相似文献
20.
Rheo‐kinetic studies on bulk polymerization reaction between hydroxyl‐terminated polybutadiene (HTPB) and di‐isocyanates such as toluene‐di‐isocyanate (TDI), hexamethylene‐di‐isocyanate (HMDI), and isophorone‐di‐isocyanate (IPDI) were undertaken by following the buildup of viscosity of the reaction mixture during the cure reaction. Rheo‐kinetic plots were obtained by plotting ln (viscosity) vs. time. The cure reaction was found to proceed in two stages with TDI and IPDI, and in a single stage with HMDI. The rate constants for the two stages k1 and k2 were determined from the rheo‐kinetic plots. The rate constants in both the stages were found to increase with catalyst concentration and decrease with NCO/OH equivalent ratio (r‐value). The ratio between the rate constants, k1/k2 also increased with catalyst concentration and r‐value. The extent of cure reaction at the point of stage separation (xi) increased with catalyst concentration and r‐value. Increase in temperature caused merger of stages. Arrhenus parameters for the uncatalyzed HTPB‐isocyanate reactions were evaluated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1869–1876, 2001 相似文献