首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this study, a high performance poly(ether sulfone) (PES) hollow fiber ultrafiltration (UF) membrane has been prepared for removal of natural organic matter (NOM). The membrane was spun from a dope solution containing PES/poly (vinyl pyrrolidone) (PVP 40K)/N‐methyl‐2‐pyrrolidone (NMP) by using a wet‐spinning process. Characterization of the membrane in terms of pure water flux, molecule weight cut‐off (MWCO), and retention for a model humic acid (HA) were conducted, and the fouling resistance was analyzed. The experimental results showed that the membrane had a pure water permeability of 20 × 10?5 L m?2 h?1 Pa?1 and a nominal MWCO of 6000 Da. The results also showed that the membrane retention for humic acid was over 97% and both productivity and selectivity for HA increased with increasing feed velocity. The PES membrane in this study exhibited a much lower fouling tendency than the commercial polysulfone membrane. SEM images revealed that the membrane had an outer dense skin and a porous inner surface. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 430–435, 2006  相似文献   

2.
Hollow‐fiber ultrafiltration (UF) membranes were prepared from blends of poly(vinyl chloride) (PVC) and polystyrene (PS) with a dry/wet phase inversion method. Poly(ethylene glycol) (PEG) and N,N‐dimethylacetamide were used as the additive and solvent, respectively. The effects of the PEG concentration in the dope solution as an additive on the cross sections and inner and outer surface morphologies, permeability, and separation performance of the hollow fibers were examined. The mean pore size, pore size distribution, and mean roughness of both the inner and outer surfaces of the produced hollow fibers were determined by atomic force microscopy. Also, the mechanical properties of the hollow‐fiber membranes were investigated. UF experiments were conducted with aqueous solutions of poly(vinyl pyrrolidone) (PVP; K‐90, Mw = 360 kDa). From the results, we found that the PVC/PS hollow‐fiber membranes had two layers with a fingerlike structure. These two layers were changed from a wide and long to a thin and short morphology with increasing PEG concentration. A novel and until now undescribed shape of the nodules in the outer surfaces, which was denoted as a sea‐waves shape, was observed. The outer and inner pore sizes both increased with increasing PEG concentration. The water permeation flux of the hollow fibers increased from 104 to 367 L m?2 h?1 bar?1) at higher PEG concentrations. The PVP rejection reached the highest value at a PEG concentration of 4 wt %, whereas at higher values (from 4 to 9 wt %), the rejection decreased. The same trend was found also for the tensile stress at break, Young's modulus, and elongation at break of the hollow fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 989‐1004, 2013  相似文献   

3.
The structure and performance of modified poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐co‐HFP) ultra‐filtration membranes prepared from casting solutions with different concentrations of poly(vinyl pyrrolidone) (PVP) were investigated in this study. Membrane properties were studied in terms of membrane compaction, pure water flux (PWF), water content (WC), membrane hydraulic resistance ( R m), protein rejection, molecular weight cut‐off (MWCO), average pore size, and porosity. PWF, WC, and thermal stability of the blend membranes increased whereas the crystalline nature and mechanical strength of the blend membranes decreased when PVP additive concentration was increased. The contact angle (CA) decreased as the PVP concentration increased in the casting solution, which indicates that the hydro‐philicity of the surface increased upon addition of PVP. The average pore size and porosity of the PVdF‐co‐HFP membrane increased to 42.82 Å and 25.12%, respectively, when 7.5 wt% PVP was blended in the casting solution. The MWCO increased from 20 to 45 kDa with an increase in PVP concentration from 0 to 7.5 wt%. The protein separation study revealed that the rejection increased as the protein molecular weight increased. The PVdF‐co‐HFP/PVP blended membrane prepared from a 7.5 wt% PVP solution had a maximum flux recovery ratio of 74.3%, which explains its better antifouling properties as compared to the neat PVdF‐co‐HFP membrane. POLYM. ENG. SCI., 55:2482–2492, 2015. © 2015 Society of Plastics Engineers  相似文献   

4.
Chlorinated poly(vinyl chloride) (CPVC)/poly(vinyl pyrrolidone) (PVP) membranes were prepared by using the solvent system tetrahydrofuran (THF)/n‐butyl alcohol (n‐BA) to investigate the possibility of pore size and pore‐size distribution control. The coagulation of CPVC/PVP solution was induced by the exposure to water vapor at 25 (±0.5)°C. The average pore diameter, dp, and the size distribution of pores on the surface of the membrane were quantified through the image analyzer from the images visualized by field emission scanning electron microscope (FE‐SEM). Surface pore size and distribution of the prepared CPVC/PVP membrane were strongly affected by the relative humidity (RH) in the environment and the content of PVP used as an additive. Particularly, in the case of CPVC membrane without PVP, the mean pore size was 0.15–0.2 μm, depending on the RH. The pore distribution became broad with the increase of the RH. The membranes had open pores as confirmed by the hydraulic permeation experiment. In addition, the water flux and membrane resistance (Rm) were greatly affected by the composition of polymer solution and the RH. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1195–1202, 2002  相似文献   

5.
Poly(vinyl chloride) (PVC) hollow‐fiber membranes were spun by a dry/wet phase‐inversion technique from dopes containing 15 wt % PVC to achieve membranes with different pore sizes for ultrafiltration (UF) applications. The effects of the N,N‐dimethylacetamide (DMAc) concentration in the internal coagulant on the structural morphology, separation performance, and mechanical properties of the produced PVC hollow fibers were investigated. The PVC membranes were characterized by scanning electron microscopy, average pore size, pore size distribution, void volume fraction measurements, and solubility parameter difference. Moreover, the UF experiments were conducted with pure water and aqueous solutions of poly(vinyl pyrrolidone) as feeds. The mechanical properties of the PVC hollow‐fiber membranes were discussed in terms of the tensile strength and Young's modulus. It was found that the PVC membrane morphology changed from thin, fingerlike macrovoids at the inner edge to fully spongelike structure with DMAc concentration in the internal coagulant. The effective pores showed a wide distribution, between 0.2 and 1.1 μm, for the membranes prepared with H2O as the internal coagulant and a narrow distribution, between 0.114 and 0.135 μm, with 50 wt % DMAc. The results illustrate that the difference in the membrane performances was dependent on the DMAc concentration. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
郑喜  王涛  任永胜  赵珍珍  王雪琪  赵之平 《化工学报》2022,73(10):4707-4721
以聚间苯二甲酰间苯二胺(PMIA)为制膜原料,氯化锂(LiCl)、聚乙二醇(PEG-400)和聚乙烯吡咯烷酮(PVP)为添加剂,通过非溶剂诱导相转化法制备了PMIA平板膜,系统考察了聚合物浓度、添加剂种类和含量对PMIA膜结构和性能的影响。结果表明,聚合物浓度和LiCl含量增加,铸膜液黏度增大,导致膜孔径减小,纯水通量降低。而PEG含量的增加,使得聚合物链呈现舒展状态,膜孔径增大,纯水通量升高,亲水性增强。随着PVP含量的增加,膜的纯水通量先升高后降低,膜的亲水性变差。当PMIA的质量分数为9%,LiCl的质量分数为2.8%,PVP的质量分数为1.2%时,膜的纯水通量高达1421.55 L·m-2·h-1·bar-1,对牛血清蛋白(BSA)的截留率为80%,展现出较高的渗透性,为制备高性能膜材料提供了新的思路。  相似文献   

7.
郑喜  王涛  任永胜  赵珍珍  王雪琪  赵之平 《化工学报》1951,73(10):4707-4721
以聚间苯二甲酰间苯二胺(PMIA)为制膜原料,氯化锂(LiCl)、聚乙二醇(PEG-400)和聚乙烯吡咯烷酮(PVP)为添加剂,通过非溶剂诱导相转化法制备了PMIA平板膜,系统考察了聚合物浓度、添加剂种类和含量对PMIA膜结构和性能的影响。结果表明,聚合物浓度和LiCl含量增加,铸膜液黏度增大,导致膜孔径减小,纯水通量降低。而PEG含量的增加,使得聚合物链呈现舒展状态,膜孔径增大,纯水通量升高,亲水性增强。随着PVP含量的增加,膜的纯水通量先升高后降低,膜的亲水性变差。当PMIA的质量分数为9%,LiCl的质量分数为2.8%,PVP的质量分数为1.2%时,膜的纯水通量高达1421.55 L·m-2·h-1·bar-1,对牛血清蛋白(BSA)的截留率为80%,展现出较高的渗透性,为制备高性能膜材料提供了新的思路。  相似文献   

8.
This study examined the consequences of the addition of polyvinyl pyrrolidone (PVP) of different molecular weights with constant molecular weight of polyacrylic acid (PAA) on the morphology and permeation properties of polysulfone (PSF) membranes. The asymmetric polymeric membranes were prepared by phase inversion process using PSF in N‐methyl‐2‐pyrrolidone (NMP) as a solvent. The surface structure and morphology of the prepared membranes were analyzed by field‐emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). The pore number, average pore size and area of pores for all the membranes were determined by permeability method. These ultrafiltration membranes were subjected to characterizations such as measurement of pure water flux (PWF), compaction factor (CF), bovine serum albumin (BSA) rejection for finding the permeability performance, whereas equilibrium water content, contact angle, porosity, hydraulic resistance, and ion exchange capacity (IEC) are measured for evaluating the hydrophilicity. Results demonstrate that the flux performance of the membranes and morphological parameters own a crucial inter‐relationship with the molecular weight of PVP. The membrane pore area and pore number were found to be increased by increasing molecular weight of PVP with constant molecular weight of PAA. A detailed comparative study was done with Chakrabarty et al. (J. Membr. Sci. 2008, 309, 209) and found better in almost all the aspects. All the resulting parameters were compared and concluded with the fact that addition of small amount of PAA in PSF/PVP/NMP casting solution can be better than addition of PVP alone. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41964.  相似文献   

9.
Polyethersulfone (PES) hollow fiber membrane was prepared by blending with nonionic surfactant Tetronic 1307 to improve its hydrophilicity. The membranes were posttreated by hypochlorite solution of 10, 100, 500, and 2000 ppm. The effect of hypochlorite treatment on the performance of PES membrane was investigated. Experimental results showed that the water permeability of treated membrane was two to three times higher than that of untreated membrane in case of blend membrane prepared from PES/N‐methyl‐2‐pyrrolidone (NMP)/Tetronic 1307 solution. On the other hand, hypochlorite treatment has no effect on water permeability of the membrane prepared from PES/NMP solution. Elemental analysis and ATR–FTIR measurement results indicated that hypochlorite treatment led to decomposition and leaching out of Tetronic 1307 component from the membrane. The change of membrane surface structure by the hypochlorite treatment was confirmed by atomic force microscopy measurement. The hypochlorite treatment brought about no significant impact on the mechanical property of the membranes. This indicated that the hypochlorite treatment of PES membrane prepared with surfactant was a useful way to improve the water permeability without the decrease of membrane strength. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Ultrafiltration (UF) membranes were prepared from poly(vinyl chloride) (PVC) as main polymer, poly(vinyl pyrrolidone) (PVP) as additive, and 1‐methyl‐2‐pyrrolidone (NMP) as solvent using Design Expert software for designing the experiments. The membranes were characterized by SEM, contact angle measurement, and atomic force microscopy. The performance of UF membranes was evaluated by pure water flux (PWF) and blue indigo dye particle rejection. In addition, the molecular weight cutoff of UF membranes was determined by poly(ethylene glycol) (PEG) rejection. The UF membranes were used as substrates for fabrication of polyamide thin film composite (TFC) reverse osmosis (RO) membranes. The results showed that the model had high reliability for prediction of PWF of UF membranes. Also, increment in PVC concentration caused reduction of PWF. Moreover, at constant PVC concentration and if the concentrations of PVC was lower than 10 wt %, the PWF reduced by increasing the concentration of PVP. However, at PVC concentration higher than 11 wt %, increment in PVP concentration showed increment and reduction of PWF. The PEG rejection results showed that the prepared membranes had UF membranes properties. Finally, the NaCl rejection tests of RO membranes by PVC as substrates indicated that the performance of RO membranes were lower than commercial membranes. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46267.  相似文献   

11.
Hydrophilic ultrafiltration membranes have been prepared by blending cellulose acetate (CA) as a matrix polymer with increasing concentrations of poly(vinylpyrrolidone) (PVP) using N,N′‐dimethylformamide as the solvent. It is observed that the presence of PVP beyond 50 wt % in the casting solution did not form membranes. Prepared membranes have been subjected to ultrafiltration characterizations such as compaction, pure water flux, water content, and membrane hydraulic resistance. The results indicate significant changes in the characteristics upon the addition of PVP, which may lead to improved performance. The porosity, pore size, and molecular weight cut‐off of the membranes also increase as the concentration of PVP increases. It is estimated that the pore radius of the CA/PVP membranes increases from 30 to 63 Å, when the concentration of PVP increased from 0 to 50 wt %. This is in agreement with the results obtained from scanning electron microscopic studies. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
Properties of asymmetric UF membranes made by solution casting of aromatic polyimides as a function of fabrication conditions are reported. The characteristic properties investigated include: the overall porosity, hydraulic permeability, the equivalent pore size of the skin layer (via a newly developed general diagram), and morphological features shown by the scanning electron microscope. It was found that as casting solution concentration and/or evaporation period was increased, the average pore size decreased while the skin thickness increased. At low casting solution concentrations the membranes were highly porous and the precipitated polymer phase had a granular structure consisting of aggregates of precipitated polymer micelles. While at high concentrations marcrovoid porosity was reduced but the precipitated polymer phase had a spongy structure. The interstitial openings of the granular skin structure of a membrane made from 15% polymer solution with no evaporation as revealed by SEM showed pore size values that were close to those calculated through pore models.  相似文献   

13.
Polyethersulfone (PES) hollow‐fiber membranes were fabricated using poly(ethyleneglycol) (PEG) with different molecular weights (MW = PEG200, PEG600, PEG2000, PEG6000, and PEG10000) and poly(vinyl pyrrolidone) PVP40000 as additives and N‐methyl‐2‐pyrrolidone (NMP) as a solvent. Asymmetric hollow‐fiber membranes were spun by a wet phase‐inversion method from 25 wt % solids of 20 : 5 : 75 (weight ratio) PES/PEG/NMP or 18 : 7 : 75 of PES/(PEG600 + PVP40000)/NMP solutions, whereas both the bore fluid and the external coagulant were water. Effects of PEG molecular weights and PEG600 concentrations in the dope solution on separation properties, morphology, and mechanical properties of PES hollow‐fiber membranes were investigated. The membrane structures of PES hollow‐fiber membranes including cross section, external surface, and internal surface were characterized by scanning electron microscopy and the mechanical properties of PES hollow‐fiber membranes were discussed. Bovine serum albumin (BSA, MW 67,000), chicken egg albumin (CEA, MW 45,000), and lysozyme (MW 14,400) were used for the measurement of rejection. It was found that with an increase of PEG molecular weights from 200 to 10,000 in the dope solution, membrane structures were changed from double‐layer fingerlike structure to voids in the shape of spheres or ellipsoids; moreover, there were crack phenomena on the internal surfaces and external surfaces of PES hollow‐fiber membranes, pure water permeation fluxes increased from 22.0 to 64.0 L m?2 h?1 bar?1, rejections of three protein for PES/PEG hollow‐fiber membranes were not significant, and changes in mechanical properties were decreased. Besides, with a decrease of PEG600 concentrations in the dope solution, permeation flux and elongation at break decreased, whereas the addition of PVP40000 in the dope solution resulted in more smooth surfaces (internal or external) of PES/(PEG600 + PVP40000) hollow‐fiber membranes than those of PES/PEG hollow‐fiber membranes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3398–3407, 2004  相似文献   

14.
In this paper, polyvinylidene fluoride (PVDF)/polymethyl acrilate (PMMA)/cellulose acetate (CA) blend UF membranes were prepared by chemical reaction introduced phase-inversion method. The results of the experiment show that: (1) The membrane pore size distribution is more uniform due to the presence of carbonates or bicarbonates in the coagulation bath; (2) No more than the stoichiometric ratio amount of carbonates or bicarbonates in the coagulation bath can effectively improve the membrane pore size distribution and make the pore size of membrane more uniform; (3) The membrane prepared by carbonates solution as a working solution in coagulation bath possess superior performance than that by bicarbonates.  相似文献   

15.
We prepared polyetherimide (PEI) hollow fiber membranes using polyvinylpyrrolidones (PVP) with different molecular weights (PVP 10,000, PVP 40,000, and PVP 1,300,000) as additives for oil/water separation. Asymmetric hollow fiber membranes were fabricated by wet phase inversion technique from 25 wt % or 30 wt % solids of 20 : 5 : 75 or 20 : 10 : 70 (weight ratio) PEI/PVP/N‐metyl‐2‐pyrrolidone (NMP) solutions and a 95 : 5 NMP/water solution was used as bore fluid to eliminate resistance on the internal surface. Effects of PVP molecular weights on morphology, oil‐surfactant‐water separation characteristics, mechanical, and thermal properties of PEI/PVP hollow fiber membranes were investigated. It was found that an increase in PVP molecular weight and percentage in PEI/PVP dope solution resulted in the membrane morphology change from the finger‐like structure to the spongy structure. Without sodium hypochlorite posttreatment, hollow fiber membranes with higher PVP molecular weights had a higher rejection but with a lower water flux. For oil‐surfactant‐water emulsion systems (1600 ppm surfactant of sodium dodecylbenzenesulfonate and 2500 ppm oil of n‐decane), experimental results illustrated that the rejection rates for surfactant, total organic carbon, and oil were 76.1 ≈ 79.8%, 91.0 ≈ 93.0%, and more than 99%, respectively. Based on the glass transition temperature values, PVP existed in hollow fiber membranes and resulted in the hydrophilicity of membranes. In addition, using NaOCl as a posttreatment agent for membranes showed a significant improvement in membrane permeability for PVP with a molecular weight of 1300 K, whereas the elongation at break of the treated hollow fiber membranes decreased significantly. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2220–2233, 1999  相似文献   

16.
《分离科学与技术》2012,47(3):327-348
Abstract

The dimensional and UF performance characteristics of hollow fiber membranes produced by the solution spinning technique using three polymer solutions (C3, C4, and C5) were studied experimentally. The polymer (polyethersulfone, PES)/solvent (1-methyl-2-pyrrolidone, NMP)/additive (polyvinyl pyrrolidone, PVP) concentration (wt%) used were 20/65/15, 20/60/20, and 25/63/12, respectively, for C3, C4, and C5 solutions, and their corresponding viscosities were 9222, 22,809, and 29,286 cP. The extrusion pressures (EP) used in fiber production were 5 to 15, 20 to 40, and 20 to 60 psig, respectively, for C3, C4, and C5 solutions; the internal coagulant water flow rate (WFR) used were 7.5 and 10 mL/min for C3 fibers, and 5 mL/min for C4 and C5 fibers; and the length of air gap (LAG) was held constant at 80 cm in the production of all the fibers. An increase in EP always tended to increase OD, while ID decreased, increased, or remained constant depending on the WFR used. An increase in PVP concentration in the fiber spinning solution contributed to greater fiber swelling effects. Nascent fiber velocity (NFV) tended to increase with an increase in EP, but it decreased considerably with an increase in PVP concentration in the fiber spinning solution and the consequent increase in solution viscosity. Both fiber dimensions and skin layer morphology were found to be governed by the combined effects of desolvation, fiber swelling, and fiber stretching during fiber production.  相似文献   

17.
《分离科学与技术》2012,47(14):2199-2210
Hollow fiber poly(vinyl chloride) membranes were prepared by using the dry/wet spinning method. Cross-section, internal, and external surfaces of the hollow fibers structure were studied by SEM. The pore size and pore size distribution of the hollow fibers were measured by a PMI capillary flow porometer. UF experiments of pure water and aqueous solution of PVP K-90 were carried out. The effect of the PVC concentration on the hollow fibers mechanical properties was also investigated. It was found that the PVC fibers cross-sectional structure was affected by the polymer concentration in the dope solution. In particular, reduction of macrovoids size was observed when increasing PVC concentration from 15 to 19 wt%. The pore size distribution of the PVC hollow fibers was controlled by adjusting the PVC concentration. Indeed, an increase of PVC concentration up to 19 wt% leads to fibers with sharp pore size distribution (the 99% of pores is about 0.15 µm).The pure water permeation flux decreased from 162 to 128 (l/m2 · h · bar), while the solute separation performance increased from 82 to 97.5%, when increasing the PVC concentration. The elongation at break, the tensile strength, and the Young's modulus of the PVC hollow fibers were improved with PVC concentration in dope solution.  相似文献   

18.
The impact that some membrane preparation steps had on ultrafiltration (UF) membrane characteristics and performance was studied. Polyethersulfone (PES) was employed as base polymer, while N‐methyl pyrrolidone (NMP) was used as a solvent, and polyvinylpyrrolidone (PVP) was used as a nonsolvent pore‐forming additive. The manufacturing variables studied were solvent evaporation time and membrane surface modification, using a fluorine‐based copolymer referred to as surface‐modifying macromolecule (SMM). The flat sheet membranes, prepared via phase inversion, were characterized using solute transport data, X‐ray photoelectron spectroscopy (XPS), and contact angle measurements. Membrane performance was evaluated via filtration test protocol that included a 6‐day filtration of concentrated river water. The flux reduction with time was modeled using single and dual mechanisms of fouling. The pore blockage/cake filtration model described better the behavior of the permeation rate along the experiments. Increasing the solvent evaporation time decreased the size of the pores and the permeation rate. However, it did not significantly affect the removal of the organic compounds naturally present in the river water used as feed. XPS and contact angle measurements proved that the short evaporation periods did not allow enough SMM migration to the surface to provoke a significant effect on the membrane performance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

19.
A highly hydrophilic hollow fiber poly(vinylidene fluoride) (PVDF) membrane [PVDF‐cl‐poly(vinyl pyrrolidone) (PVP) membrane] was prepared by a cross‐linking reaction with the hydrophilic PVP, which was immobilized firmly on the outer surface and cross‐section of the PVDF hollow fiber membrane via a simple immersion process. The cross‐linking between PVDF and PVP was firstly verified via nuclear magnetic resonance measurement on PVP solution after cross‐linking. The hydrophilic stability of the modified PVDF membrane was evaluated by measuring the pure water flux after different times of immersion and drying. The anti‐fouling properties were estimated by cyclic filtration of protein solution. When the cross‐linking time was as long as 6 hr and the PVP content reached 5 wt %, the pure water flux (Jv) was constant as ~ 600 L m?2 hr?1. The hydrophilicity of the PVDF‐cl‐PVP membrane was significantly enhanced and exhibited a good stability. The PVDF‐cl‐PVP membrane showed an excellent anti‐protein‐fouling performance during the cyclic filtration of bovine serum albumin solution. Therefore, a highly hydrophilic and anti‐protein‐fouling PVDF hollow fiber membrane with a long‐term stability can be prepared by a simple and economical cross‐linking process with PVP. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
ABA‐type amphiphilic triblock copolymers (TBCs) were synthesized by a reversible addition fragmentation chain transfer (RAFT) process with a telechelic polystyrene macro‐RAFT agent and 4‐[n‐(acryloyloxy)alkyloxy]benzoic acid monomers. Ultrafiltration (UF) membranes were fabricated by a phase‐inversion process with blends of the TBC, poly(vinylidene fluoride) (PVDF), and poly(vinyl pyrrolidone) (PVP) in dimethylformamide. The UF‐fabricated membranes were characterized by scanning electron microscopy, atomic force microscopy, water contact angle measurement, thermogravimetric analysis, and differential scanning calorimetry. Pure water permeation, molecular weight cutoff values obtained by the permeation of different molecular weight polymers as probe solutes, bovine serum albumin (BSA) solution permeate flux, and oil–water emulsion filtration tests were used to evaluate the separation characteristics of the fabricated membranes. The tripolymer blend membranes exhibited a higher flux recovery ratio (FRR) after the membrane was washed with sodium lauryl sulfate (0.05 wt %) solution for a BSA solution (FRR = 88%) and oil–water emulsion (FRR = 95%) feeds when than the PVDF–PVP blend membrane (57 and 80% FRR values for the BSA solution and oil–water emulsion, respectively). The pendant carboxylic acid functional moieties in this ABA‐type TBC have potential advantages in the fabrication of high‐performance membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45132.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号