首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用瞬态热线法和闪光法分别测量了多种结构参数的三维机织碳纤维/环氧树脂复合材料的导热系数。通过对3D正交机织碳纤维/环氧树脂复合材料的有限元模拟可以看出,3D正交机织碳纤维/环氧树脂复合材料内经纱、纬纱和Z向纱的导热作用在不同的受热形式下会发生变化。采用瞬态热线法测量时,2.5D机织碳纤维/环氧树脂复合材料的导热系数低于2.5D经向增强结构,同时高于3D正交结构,而采用闪光法测量时,2.5D经向增强和3D正交碳纤维/环氧树脂复合材料的导热系数均小于2.5D机织结构。这是由于在使用不同的测量方法时,三维机织碳纤维/环氧树脂复合材料内部相同的纱线系统在导热过程中所起的作用并不相同。随着纤维体积含量的提高,瞬态热线法和闪光法测得的2.5D机织碳纤维/环氧树脂复合材料的导热系数都在不断提高。由于经纱的屈曲,采用闪光法测量时,导热性能提升更加明显。研究结果表明,三维机织碳纤维/环氧树脂复合材料在不同受热形式下具有不同的热响应机制。  相似文献   

2.
This study introduces two micromechanical modeling approaches to analyze spatial variations of temperatures, stresses and displacements in particulate composites during transient heat conduction. In the first approach, a simple micromechanical model based on a first order homogenization scheme is adopted to obtain effective mechanical and thermal properties, i.e., coefficient of linear thermal expansion, thermal conductivity, and elastic constants, of a particulate composite. These effective properties are evaluated at each material (integration) point in three dimensional (3D) finite element (FE) models that represent homogenized composite media. The second approach treats a heterogeneous composite explicitly. Heterogeneous composites that consist of solid spherical particles randomly distributed in homogeneous matrix are generated using 3D continuum elements in an FE framework. For each volume fraction (VF) of particles, the FE models of heterogeneous composites with different particle sizes and arrangements are generated such that these models represent realistic volume elements “cut out” from a particulate composite. An extended definition of a RVE for heterogeneous composite is introduced, i.e., the number of heterogeneities in a fixed volume that yield the same expected effective response for the quantity of interest when subjected to similar loading and boundary conditions. Thermal and mechanical properties of both particle and matrix constituents are temperature dependent. The effects of particle distributions and sizes on the variations of temperature, stress and displacement fields are examined. The predictions of field variables from the homogenized micromechanical model are compared with those of the heterogeneous composites. Both displacement and temperature fields are found to be in good agreement. The micromechanical model that provides homogenized responses gives average values of the field variables. Thus, it cannot capture the discontinuities of the thermal stresses at the particle-matrix interface regions and local variations of the field variables within particle and matrix regions.  相似文献   

3.
In this study, we formulate the effective temperature-dependent thermal conductivity of laminated composites. The studied laminated composites consist of laminas (plies) made of unidirectional fiber-reinforced matrix with various fiber orientations. The effective thermal conductivity is obtained through a two-scale homogenization scheme. A simplified micromechanical model of a unidirectional fiber-reinforced lamina is formulated at the lower scale. Thermal conductivities of fiber and matrix constituents are allowed to change with temperature. The upper scale uses a sublaminate model to homogenize temperature-dependent thermal conductivities of only a representative lamina stacking sequence in laminated composites. The effective thermal conductivity of each lamina, in the sublaminate model, is obtained using the simplified micromechanical model. The thermal conductivities from the micromechanical and sublaminate models represent average nonlinear properties of fictitiously homogeneous composite media. Interface conditions between fiber and matrix constituents and within laminas are assumed to be perfect. Experimental data available in the literature are used to verify the proposed multi-scale framework. We then analyze transient heat conduction in the homogenized composites. Temperature profiles, during transient heat conduction, in the homogenized composites are compared to the ones in heterogeneous composites. The heterogeneous composites, having different fiber arrangements and sizes, are modeled using finite element (FE) method.  相似文献   

4.
This paper presents a novel method to quantitatively characterize the thermal performance of composite materials containing phase change materials (PCM) based on a figure of merit we termed the energy indicator. The method features (i) commonly used specimen geometry, (ii) straightforward experimental implementation, and (iii) sensitivity to relevant design parameters including PCM volume fraction, enthalpy of phase change, composite effective thermal conductivity, and specimen dimensions. The experimental method and the concept of energy indicator were demonstrated on PCM-mortar composites using various volume fractions of two commercial microencapsulated PCMs. This was supported by transient two-dimensional heat transfer simulations. The energy indicator was shown to increase linearly with increasing microencapsulated PCM volume fraction and latent heat of fusion and quadratically with the specimen radius. This figure of merit can be used to rapidly screen and select microencapsulated PCM composite materials for energy efficient buildings or crack-resistant concretes.  相似文献   

5.
通过膨胀石墨粉与石蜡混合制备相变复合材料可有效提高该储能材料的传热性能。为研究膨胀石墨/石蜡相变复合材料的导热机制,提出了膨胀石墨粉与石蜡混合后的3尺度层次固体有效导热系数计算方法。然后,通过数值模拟计算得到了具有不同体积分数和不同导热系数的膨胀石墨导热颗粒的膨胀石墨/石蜡相变复合材料的有效导热系数。结果表明:膨胀石墨能够有效地提高石蜡的导热性能,当膨胀石墨的体积分数为10%时,膨胀石墨/石蜡相变复合材料的有效导热系数是纯石蜡的9倍。此外,提高底层尺度的石墨片与石蜡的混合程度及降低底层尺度石墨的体积分数都能有效提高膨胀石墨/石蜡相变复合材料的有效导热系数。所得结论为探究膨胀石墨粉提高相变复合材料导热系数的机理奠定了基础。  相似文献   

6.
This paper presents a microstructure-guided numerical homogenization technique to predict the effective thermal conductivity of a hierarchical cement-based material containing phase change material (PCM)-impregnated lightweight aggregates (LWA). Porous inclusions such as LWAs embedded in a cementitious matrix are filled with multiple fluid phases including PCM to obtain desirable thermal properties for building and infrastructure applications. Simulations are carried out on realistic three-dimensional microstructures generated using pore structure information. An inverse analysis procedure is used to extract the intrinsic thermal properties of those microstructural components for which data is not available. The homogenized heat flux is predicted for an imposed temperature gradient from which the effective composite thermal conductivity is computed. The simulated effective composite thermal conductivities are found to correlate very well with experimental measurements for a family of LWA-PCM composites considered in the paper. Comparisons with commonly used analytical homogenization models show that the microstructure-guided simulation approach provides superior results for composites exhibiting large property contrast between phases. By linking the microstructure and thermal properties of hierarchical materials, an efficient framework is available for optimizing the material design to improve thermal efficiency of a wide variety of heterogeneous materials.  相似文献   

7.
The effective thermal conductivity of dispersed composites with a hot-melt-adhesive matrix, measured using the steady-state method, is compared with the apparent thermal conductivity calculated from the average heat capacity and from the thermal diffusivity measured by the laser-flash method. The transient effect has been observed obviously at higher volume percentages for various dispersed particle sizes and ratios of the thermal conductivity values of dispersed and continuous phases. All of the experimental results are compared with those calculated by existing models and by the finite element method (FEM). An attempt has been made to show how the criterion for the homogeneity of dispersed composites under transient conditions is affected by the percentages of dispersed phase, dispersed particle size, and ratio of the thermal conductivity values of dispersed and continuous phases.  相似文献   

8.
Thermal conductivity is an important parameter for characterization of thermal properties of materials. Various complicated factors affect the thermal conductivity of inorganic particulate-filled polymer composites. The heat transfer process and mechanisms in an inorganic particulate-filled polymer composite were analyzed in this article. A new theoretical model of heat transfer in these composites was established based on the law of minimal thermal resistance and the equal law of the specific equivalent thermal conductivity, and an relevant equation of effective thermal conductivity (K eff) for describing a relationship between K eff and filler volume fraction as well as other thermal parameters were derived based on this model. The values of K eff of aluminum powder-filled phenol–aldehyde composites and graphite powder-filled phenol–aldehyde composites were estimated by using this equation, and the calculations were compared with the experimental measured data from these composites with filler volume fraction from 0 to 50% in temperature range of 50–60 °C and the predictions by Maxwell–Eucken equation and Russell equation. The results showed that the predictions of the K eff by this equation were closer to the measured data of these composites than the other equations proposed in literature.  相似文献   

9.
Copper/diamond (Cu/D) composites are known for their applications in thermal management systems. This paper investigates the effect of interfacial thermal resistance (TR) upon the effective thermal conductivity of Cu/D composites through experimental and numerical means. The composite samples were made using uncoated, Cu-coated, and Cr-coated diamond particles. The transient plane source method was used to measure the thermal conductivity of the composite samples, while the micrographs of the specimens were used to develop the finite element models. Together with the experimental and numerical results, the interfacial TR was identified in each sample. Although Hasselman–Johnson model calculated the conductivity values with significant error, the trend shown by experimental results is still followed. The finite element model, however, led to an error of less than 1%. The numerical analysis showed that the TR depends not only upon the diamond volume fraction but also upon the coating material. Finally, it has been demonstrated that numerical simulation may be employed to reveal the appropriate combinations of diamond fraction and the coating material in order to attain the desired level of effective thermal conductivity.  相似文献   

10.
利用具有精确周期性边界条件的均质化理论, 用宏微观有限元法分析了非连续碳纳米管呈规则和交错2 种排列情况下, 纳米管沿管长方向的应力分布规律。为保证传统的连续力学理论的适用性, 本文中的碳纳米管采用了用分子动力学方法简化的等效纤维模型。规则排列所得结果与应用Cox 剪滞理论及Lauke、Fu 等经典理论得出的结果比较发现: 除了经典理论中指出的碳纳米管长径比及纳米管体积含量2 个因素外, 纳米管形状及在基体中的排列方式对材料的力学性质也有较大影响。交错排列的纳米管在复合材料中有较高效率的应力转化和传递能力, 碳纳米管的端部间距(2 Tf ) 对应力的分布有较大的影响。结果显示出碳纳米管作为材料增强相的特殊性, 证明了均质化理论分析碳纳米管增强复合材料应力分布规律的可行性。   相似文献   

11.
Thermally conductive and electrically insulating h-BN/MVQ and h-BN/SiCw/MVQ composites were prepared by internal mixing and two roll mixing, using 1-dimensional (1D) silicon carbide whiskers (SiCw) and 2-dimensional (2D) hexagonal boron nitride flakes (h-BN) as fillers, and methyl vinyl silicone rubber (MVQ) as polymer matrix. Surface modification of 1?D SiCw and 2?D h-BN was characterized by Fourier transform infrared spectroscopy (FT-IR) and contact angle analysis. Morphology, thermal conductivity and dielectric constant of h-BN/MVQ and h-BN/SiCw/MVQ were studied. The results indicated that surface modified h-BN and SiCw could be uniformly distributed in MVQ matrix. At the same volume filler loading, thermal conductivity of h-BN/SiCw/MVQ ternary composite was higher than that of h-BN/MVQ binary composite. When part of 2?D h-BN was instead of 1?D SiCw, there was synergistically enhanced effect between 1?D SiCw and 2?D h-BN for thermal conductivity. When volume ratio of h-BN/SiCw was 8/2, thermal conductivity of h-BN/SiCw/MVQ was higher than that of other ratio. Thermal conductivity of h-BN/SiCw/MVQ composite with different volume ratio was linearly fit with Agari’ model.  相似文献   

12.
Thermal Conduction and Insulation Modification in Asphalt-Based Composites   总被引:1,自引:0,他引:1  
The relationship between thermal conductivity and properties of mixing particles is required for quantitative study of heat transfer processes in asphalt-based materials. In this paper, we measured the e?ective ther- mal conductivity of asphalt-based materials with thermal conduction (graphite) and insulation (cenosphere) powders modification. By taking account of the particle shape, volume fraction, the thermal conductivity of filling particles and base asphalt, we present a new differential effective medium formula to predict the thermal conductivity modification in asphalt-based composite. Our theoretical predications are in good agreement with the experiment data. The new model can be applied for predicting the thermal properties of asphalt-based mixture, which is available for most of thermal modification in two-phase composites.  相似文献   

13.
The percolation behaviour and electrical conductivity in unidirectional composites made of short conductive fibres embedded in an insulating matrix were examined by Monte Carlo simulation as a function of aspect ratio, volume fraction and angle. The unidirectional composite exhibited a highly anisotropic percolation behaviour with respect to the fibre direction for both fibre normal and fixed-length distribution. For the direction parallel to the fibre, the electrical conductivity increased exponentially with the volume fraction and the exponent increased as the aspect ratio increased. The conductivity in the transverse direction exhibited a sharp transition, from zero to nearly the same level as parallel conductivity at the critical volume fraction. The percolation threshold for the transverse direction also increased with aspect ratio up to 20, above which it decreased in parabolic manner. Both the threshold volume fraction and transient increase in conductivity in the transverse direction varied parabolically with aspect ratio, the maximum being an aspect ratio of 20.  相似文献   

14.
The main focus of this study is to utilize waste grass broom natural fibers as reinforcement and polyester resin as matrix for making partially biodegradable green composites. Thermal conductivity, specific heat capacity and thermal diffusivity of composites were investigated as a function of fiber content and temperature. The waste grass broom fiber has a tensile strength of 297.58 MPa, modulus of 18.28 GPa, and an effective density of 864 kg/m3. The volume fraction of fibers in the composites was varied from 0.163 to 0.358. Thermal conductivity of unidirectional composites was investigated experimentally by a guarded heat flow meter method. The results show that the thermal conductivity of composite decreased with increase in fiber content and the quite opposite trend was observed with respect to temperature. Moreover, the experimental results of thermal conductivity at different volume fractions were compared with two theoretical models. The specific heat capacity of the composite as measured by differential scanning calorimeter showed similar trend as that of the thermal conductivity. The variation in thermal diffusivity with respect to volume fraction of fiber and temperature was not so significant.The tensile strength and tensile modulus of the composites showed a maximum improvement of 222% and 173%, respectively over pure matrix. The work of fracture of the composites with maximum volume fraction of fibers was found to be 296 Jm−1.  相似文献   

15.
A mathematical model is presented to obtain the effective thermal conductivity and the effective heat capacity in composite materials due to oscillating temperature field. An integro-differential equation for temperature field in composites is derived using the Green's function for heat conduction. The ensemble averaged temperature field is determined by a self-consistent scheme to yield algebraic equations for the effective thermal conductivity and the effective heat capacity. The obtained expression for the effective thermal conductivity is not symmetrical with the interchange of the matrix phase and the inclusion phase.  相似文献   

16.
导热系数低是影响相变储热材料应用的主要难题之一,而泡沫金属具有高热导率、高孔隙率以及高比表面积等特性,在相变材料中添加泡沫金属可实现强化传热。该文基于泡沫金属基3D微观结构W-P模型,重点分析了泡沫金属基复合相变材料有效导热系数与泡沫金属孔隙率以及孔径的关系,采用数值模拟方法利用该模型预测并验证了泡沫铝6101添加空气与水的有效导热系数,研究结果表明该模型能够精确预测泡沫金属材料有效导热系数,在此基础上预测了石蜡中添加泡沫铜的有效导热系数,结果表明,泡沫金属可以显著提高相变材料的导热系数,当泡沫铜的孔隙率为97.57%时,复合相变材料的导热系数与纯石蜡相比提高了13倍。研究结果对于相变储热材料的热物性强化研究具有一定参考价值。  相似文献   

17.
《Composites Part B》2003,34(7):587-592
In this paper we investigate the effective conductivity of composite materials by means of the homogenization method. We concentrate on composites with circular or elliptic cylindrical inclusions. In particular, we are interested in the effect of the distribution of the cylinders in the continuous material on the effective properties. We compare rectangular and hexagonal distributions with random distributions for different volume fractions of the inclusions. We also study the effect of the number of inclusions in each periodic cell for the random structure as well as shape influence of the elliptical inclusions.  相似文献   

18.
有效热导率是铝基复合材料在电子封装、热控方面应用的重要性能指标.结合复合材料广义自洽微观力学模型,并在Maxwell理论的基础上,初步建立了适合高体积分数SiCp/Al复合材料的有效热导率预测模型.模型不仅考虑了颗粒与颗粒、颗粒与基体间的界面效应,而且在一定程度上也考虑了增强体颗粒的形状.其理论计算结果与实测值吻合较好.  相似文献   

19.
Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.  相似文献   

20.
This paper is on the investigation of the orthotropic heat transfer properties of unidirectional fibre reinforced materials. The orthotropic effective thermal conductivity of such composite materials is investigated based on two different approaches: the finite element method as a representative for numerical approximation methods and an analytical method for homogenised models based on the solution of the respective boundary value problem. It is found that fibre reinforced composites possess strong orthotropic heat transfer properties, which are getting more distinctive with increasing deviation of the thermal conductivities of matrix and reinforcements. Furthermore, the effect of small perturbations of the periodic configuration of fibres in the matrix on the thermal conductivity is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号