首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tie Li  Masaru Suzuki  Hideyuki Ogawa 《Fuel》2009,88(10):2017-354
The effects of ethyl tert-butyl ether (ETBE) addition to diesel fuel on the characteristics of combustion and exhaust emissions of a common rail direct injection diesel engine with high rates of cooled exhaust gas recirculation (EGR) were investigated. Test fuels were prepared by blending 0, 10, 20, 30 and 40 vol% ETBE to a commercial diesel fuel. Increasing ETBE fraction in the fuel helps to suppress the smoke emission increasing with EGR, but a too high fraction of ETBE leads to misfiring at higher EGR rates. While the combustion noise and NOx emissions increase with increases in ETBE fraction at relatively low EGR rates, they can be suppressed to low levels by increasing EGR. Though there are no significant increases in THC and CO emissions due to ETBE addition to diesel fuel in a wide range of EGR rates, the ETBE blended fuel results in higher aldehyde emissions than the pure diesel fuel at relatively low EGR rates. With the 30% ETBE blended fuel, the operating load range of smokeless, ultra-low NOx (<0.5 g/kWi h), and efficient diesel combustion with high rates of cooled EGR is extended to higher loads than with the pure diesel fuel.  相似文献   

2.
3.
The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel combustion process, pollutant formation and exhaust aftertreatment. Because its physical properties and chemical composition are distinctly different from conventional diesel fuel, biodiesel can alter the fuel injection and ignition processes whether neat or in blends. As a consequence, the emissions of NOx and the amount, character and composition of particulate emissions are significantly affected. In this paper, we survey observations from a spectrum of our earlier studies on the impact of biodiesel on diesel combustion, emissions and emission control to provide a summary of the challenges and opportunities that biodiesel can provide.  相似文献   

4.
Alain Maiboom  Xavier Tauzia 《Fuel》2011,90(11):3179-3192
Automotive Diesel engines exhaust emissions must constantly be reduced to comply with more and more stringent regulations, all over the world. The introduction of water in the combustion chamber is already used on some large marine diesel engines to cut down NOx emission.In this paper an experimental study is conducted on a modern automotive 1.5 l HSDI Diesel engine while injecting a water-in-diesel emulsion (WDE) with a volumetric water-to-fuel ratio of 25.6%. Four injection strategies are considered with and without pilot injection, with two levels of injection pressure. First, the injection of WDE is compared to diesel-fuel in terms of combustion and NOx and PM emissions without using exhaust gas recirculation (EGR). Depending on the WDE fuelling rate and injection strategy (with or without a pilot injection before main injection), NOx emissions are most often reduced (of up to 50%), and PM emission are most often decreased as well (the maximum relative reduction being 94%). The combustion is largely affected by the injection of WDE as compared with pure diesel-fuel, the main observations being an increased of the ignition delay and an improved mixing-process between the fuel and the surrounding gases.After that, the use of WDE in parallel with EGR (with various EGR rates) is tested with the aim at improving the NOx–PM trade-off (reduction of NOx emission at a given PM emission level or reduction of PM emission at a given NOx emission level). The results show that this method is an effective way for NOx and PM emission reduction on an automotive Diesel engine.  相似文献   

5.
This paper presents the results of engine tests of biodiesels obtained by transesterification of palm oil and rapeseed oil and with fossil diesel fuel as a reference. The analysis is focused on the determination of the ignition delay and on obtaining a predictive correlation for it. The experiments show no significant difference in in-cylinder pressures at injection timing for each fuel. With biodiesel slightly lower peak cylinder pressures were observed for most engine conditions. Palm oil and rapeseed oil biodiesel gave shorter ignition delay than fossil diesel fuel due to the higher cetane number for the biodiesels. The ignition delay data were correlated as a function of the equivalence ratio, the mean cylinder pressure and mean temperature over the ignition delay interval. A comparison is made with other available correlations. The ignition delay values estimated by the new correlations are in good agreement with the experiments.  相似文献   

6.
In this work, the effects of a standard ultra-low sulphur diesel (ULSD) fuel and a new, ultra-clean synthetic GTL (gas-to-liquid) fuel on the performance, combustion and emissions of a single-cylinder, direct injection, diesel engine were studied under different operating conditions with addition of simulated reformer product gas, referred to as reformed EGR (REGR). For this purpose various levels of REGR of two different compositions were tested. Tests with standard EGR were also carried out for comparison. Experiments were performed at four steady state operating conditions and the brake thermal efficiency, combustion process and engine emission data are presented and discussed. In general, GTL fuel resulted in a higher brake thermal efficiency compared to ULSD but the differences depended on the engine condition and EGR/REGR level and composition. The combustion pattern was significantly modified when the REGR level was increased. Although the extent of the effects of REGR on emissions depended on the engine load, it can be generally concluded that an optimal combination of GTL and REGR significantly improved both NOx and smoke emissions. In some cases, NOx and smoke emission reductions of 75% and 60%, respectively, were achieved compared to operation with ULSD without REGR. This offers a great potential for engine manufacturers to meet the requirements of future emission regulations.  相似文献   

7.
This paper describes combustion studies of dimethyl ether in a common rail turbodiesel engine wherein the dimethyl ether was fumigated into the intake air and the conventional diesel injection was used with the intention of igniting the premixed DME-air charge. This combustion process is referred to here as a “mixed mode” process and is similar in some respects to what is commonly referred to as “dual fuel” combustion. In contrast to “dual fuel” combustion, however, in which the gaseous fuel is often natural gas or biogas, in this process with DME the gaseous charge ignites largely independently of the diesel injection. The diesel injection was accomplished with a single, main injection. The engine was operated at a single speed and load. Gaseous and particulate emissions were monitored and heat release analysis was performed to examine how the fuels burn and the impact on emissions formation at various levels of substitution of diesel fuel with fumigated DME, at as high as 44% of the fuel energy from DME. Reductions in NOx emissions and increases in particulate matter emissions are observed with DME fumigation. The increase in PM emissions is attributed to enrichment of the diesel fuel spray, due to displacement of intake oxygen by the fumigated DME, despite the widely observed soot suppressing effect of DME.  相似文献   

8.
In this study, performance and exhaust emissions of biodiesel in a compression ignition engine was experimentally investigated. Therefore, biodiesel has been made by transesterification from cotton seed oil and then it was mixed with diesel fuel by 25% volumetrically, called here as B75 fuel. B75 fuel was tested, as alternative fuel, in a single cylinder, four strokes, and air-cooled diesel engine. The effect of B75 and diesel fuels on the engine power, engine torque and break specific fuel consumption were clarified by the performance tests. The influences of B75 fuel on CO, HC, NOx, Smoke opacity, CO2, and O2 emissions were investigated by emission tests. The engine torque and power, for B75 fuel, were lower than that of diesel fuel in range of 2-3%. However, for the B75, specific fuel consumption was higher than that of diesel fuel by approximately 3%. CO2, CO, HC, smoke opacity and NOx emissions of B75 fuel were lower than that of diesel fuel. The experimental results showed that B75 fuel can be substituted for the diesel fuel without any modifications in diesel engines.  相似文献   

9.
H.E. Saleh 《Fuel》2009,88(8):1357-136
Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is a very good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were made in two sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME are determined and compared. Secondly, tests were performed at two speeds and loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Also, effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NOx emissions with JME fuel especially in light duty diesel engines. A better trade-off between HC, CO and NOx emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty.  相似文献   

10.
An experimental investigation was performed to study the influence of dual-fuel combustion characteristics on the exhaust emissions and combustion performance in a diesel engine fueled with biogas-biodiesel dual-fuel. In this work, the combustion pressure and the rate of heat release were evaluated under various conditions in order to analyze the combustion and emission characteristics for single-fuel (diesel and biodiesel) and dual-fuel (biogas-diesel and biogas-biodiesel) combustion modes in a diesel engine. In addition, to compare the engine performances and exhaust emission characteristics with combustion mode, fuel consumption, exhaust gas temperature, efficiency, and exhaust emissions were also investigated under various test conditions. For the dual-fuel system, the intake system of the test engine was modified to convert into biogas and biodiesel of a dual-fueled combustion engine. Biogas was injected during the intake process by two electronically controlled gas injectors, which were installed in the intake pipe.The results of this study showed that the combustion characteristics of single-fuel combustion for biodiesel and diesel indicated the similar patterns at various engine loads. In dual-fuel mode, the peak pressure and heat release for biogas-biodiesel were slightly lower compared to biogas-diesel at low load. At 60% load, biogas-biodiesel combustion exhibited the slightly higher peak pressure, rate of heat release (ROHR) and indicated mean effective pressure (IMEP) than those of diesel. Also, the ignition delay for biogas-biodiesel indicated shortened trends compared to ULSD dual-fueling due to the higher cetane number (CN) of biodiesel. Significantly lower NOx emissions were emitted under dual-fuel operation for both cases of pilot fuels compared to single-fuel mode at all engine load conditions. Also, biogas-biodiesel provided superior performance in reductions of soot emissions due to the absence of aromatics, the low sulfur, and oxygen contents for biodiesel.  相似文献   

11.
M. Mani  G. Nagarajan 《Fuel》2010,89(8):1826-1832
Environmental degradation and depleting oil reserves are matters of great concern around the globe. Developing countries like India depend heavily on oil import of about 125 Mt per annum (7:1 diesel/gasoline). Diesel being the main transport fuel in India, finding a suitable alternative to diesel is an urgent need. In this context, waste plastic solid is currently receiving renewed interest. Waste plastic oil is suitable for compression ignition engines and more attention is focused in India because of its potential to generate large-scale employment and relatively low environmental degradation. The present investigation was to study the effect of cooled exhaust gas recirculation (EGR) on four stroke, single cylinder, direct injection (DI) diesel engine using 100% waste plastic oil. Experimental results showed higher oxides of nitrogen emissions when fueled with waste plastic oil without EGR. NOx emissions were reduced when the engine was operated with cooled EGR. The EGR level was optimized as 20% based on significant reduction in NOx emissions, minimum possible smoke, CO, HC emissions and comparable brake thermal efficiency. Smoke emissions of waste plastic oil were higher at all loads. Combustion parameters were found to be comparable with and without EGR. Compression ignition engines run on waste plastic oil are found to emit higher oxides of nitrogen.  相似文献   

12.
Seung Hyun Yoon 《Fuel》2011,90(10):3071-3077
This study was performed to investigate the effect of biogas-biodiesel fuel combustion on the emissions reduction and nanoparticle characteristics in a direct injection (DI) diesel engine. In order to apply the two biofuels, biogas was injected into a premixed chamber during the intake process by using two electronically controlled gas injectors, and biodiesel fuel was directly injected into combustion chamber by a high-pressure injection system. The in-cylinder pressure and rate of heat release (ROHR) were investigated under various fuel conditions for single-fuel (biodiesel) and dual-fuel (biogas-biodiesel) combustions. To evaluate the engine performances and exhaust emissions characteristics, the indicated mean effective pressure (IMEP) and exhaust emissions were also investigated under various test conditions. Furthermore, the particle number concentration and the size distribution of nanoparticles were analyzed by using a scanning mobility particle sizer (SMPS).In the case of dual-fuels, the peak combustion pressure and ROHR were gradually decreased with the increase of the biogas fraction in the dual-fuels. As the premixed ratios increased, ignition delay and combustion durations were prolonged compared to single-fuel mode. The dual-fuels combustion showed that the IMEP decreased slightly and maintained similar levels up to 20° BTDC due to the retarded combustion phase. The concentrations of NOx emissions were decreased for all injection timings as the premixed ratio (rp) increased. The soot emissions in dual-fuel operations were significantly lower than those in the single-fuel mode (rp = 0), and decreased gradually as the premixed ratio increased, regardless of injection timing. A lower nanoparticle size distribution was observed at all premixed ratios for dual-fuel combustion compared to those of the single fuel mode. The number distribution of both nuclei and accumulation modes also decreased with an increase in the biogas fraction. A slight reduction in the total particle number and total volume for all premixed ratios was observed as the injection timing increased from TDC up to 20° BTDC.  相似文献   

13.
P. McCarthy  S. Moazzem 《Fuel》2011,90(6):2147-2157
The performance and emissions of an internal combustion engine (ICE) engine fuelled with two bio-diesels are experimentally measured and analysed according to ISO 8178 standard and compared with that of the petroleum diesel. Two types of bio-diesel, type A and type B (defined in Section 1) with their blends of B5, B10, B20, B50 and B100 are tested and analysed. This study found that the performance of both bio-diesel fuels reduces with increasing blend ratio, with a torque decrease of 5% for both bio-diesels, and a fuel consumption increase of 7-10%. This can be attributed to the lower energy content of bio-diesel when compared with petroleum diesel. For both the bio-diesels, some emissions were found to be higher than petroleum diesel, while some were lower. Nitrogen Oxide (NOx) emissions decreased by 14% for bio-diesel A, but increased by 17% for bio-diesel B. Carbon monoxides (CO) emissions were significantly reduced for both bio-diesel A and B, with reductions of 58% and 27% respectively. Hydrocarbon (HC) emissions were found to increase with increasing blend ratio for both bio-diesels, with an increase of 10% for bio-diesel A and 80% for bio-diesel B. Lastly, Carbon dioxides (CO2) emissions were found to increase, with an increase of 6% for bio-diesel A and 18% for bio-diesel B. The study clearly found that each of the bio-diesels has different scale of effect on ICE performance and emissions and hence, it is essential to test bio-diesels before it can be recommended for mass scale production and for commercial use in ICE. However, the study indicates that the two major pollutant gas emissions are generally reduced when using bio-diesel, therefore bio-diesel can be considered to be a more environmentally friendly, secure and renewable approach of obtaining energy in the long run.  相似文献   

14.
Breda Kegl 《Fuel》2008,87(7):1306-1317
This paper deals with numerical and experimental analysis of the influence of fuel temperature on the injection process. The tested injection system is the mechanically controlled diesel fuel injection M system of a bus diesel engine. The considered fuels are neat biodiesel from rapeseed oil and neat mineral diesel. All injection parameters, obtained with biodiesel, are compared to those of mineral diesel. At first, attention is focused on a single injection assembly (plunger-in-barrel assembly, high pressure tube, and injector). The flow through a single assembly to one cylinder is investigated numerically by using an one-dimensional mathematical model. The injection process is simulated at different operating regimes. On the basis of the numerical results, the influence of fuel temperatures on the injection characteristics, especially on fuelling at some stage of injection, mean injection rate, mean injection pressure, injection delay, and injection timing is investigated in view of harmful emissions reduction. Furthermore, the fuel flow through the whole injection system (all six injection assemblies) to all six cylinders is investigated experimentally with respect to fuel temperature. The pressure drop through the fuel filter and fuelling through each of six injection assemblies are analyzed.  相似文献   

15.
In this study, the effect of injection timing and EGR rate on the combustion and emissions of a Ford Lion V6 split injection strategy direct injection diesel engine has been experimentally investigated by using neat biodiesel produced from soybean oil. The results showed that, with the increasing of EGR rate, the brake specific fuel combustion (BSFC) and soot emission were slightly increased, and nitrogen oxide (NOx) emission was evidently decreased. Under higher EGR rate, the peak pressure was slightly lower, and the peak heat release rate kept almost identical at lower engine load, and was higher at higher engine load. With the main injection timing retarded, BSFC was slightly increased, NOx emission was evidently decreased, and soot emission hardly varied. The second peak pressure was evidently decreased and the heat release rate was slightly increased.  相似文献   

16.
It is well known that injection strategies including the injection timing and the injection rate-shape play an important role in determining engine performance, especially pollutant emissions. But how the injection timing and the injection rate-shape quantitatively affect the performance of diesel low temperature combustion (LTC) is still not well understood. In this paper, the KIVA-CHEMKIN computational fluid dynamics (CFD) code with an improved spray model is used to simulate the spray and combustion processes of diesel LTC with early and late injection timings and seven different injection rate-shapes. The validation of the models is based on comparisons with laser diagnostic and in-cylinder pressure data under a low load operating condition. It is concluded that the use of early injection provides lower soot, HC and CO emissions but higher NOx emissions than the late injection. A rectangular-type (case1) and boot-type (case 4) injection rate-shape displays the potential to reduce the soot, HC and CO emissions compared the other generic rate-shapes considered.  相似文献   

17.
Decoupling cetane number from the other compositions and properties of diesel fuel, the individual effect of cetane number on the exhaust emissions from an engine may be researched. This paper has presented a back-propagation neural network model predicting the exhaust emissions from an engine with the inputs of total cetane number, base cetane number and cetane improver, total cetane number and nitrogen content in the diesel fuel; as well as the output of the exhaust emissions of hydrocarbon (HC), carbon oxide (CO), particulate matter (PM) and nitrogen oxide (NOx). An optimal design has been completed for the number of hidden layers, the number of hidden neurons, the activation function, and the goal errors, along with the initial weights and biases in the back-propagation neural network model. HC, CO, PM and NOx have been predicted with the model, the effects of cetane improver and nitrogen content on them have also been analyzed, and better results have been achieved.  相似文献   

18.
Safflower seed oil was chemically treated by the transesterification reaction in methyl alcohol environment with sodium hydroxide (NaOH) to produce biodiesel. The produced biodiesel was blended with diesel fuel by 5% (B5), 20% (B20) and 50% (B50) volumetrically. Some of important physical and chemical fuel properties of blend fuels, pure biodiesel and diesel fuel were determined. Performance and emission tests were carried out on a single cylinder diesel engine to compare biodiesel blends with petroleum diesel fuel. Average performance reductions were found as 2.2%, 6.3% and 11.2% for B5, B20 and B50 fuels, respectively, in comparison to diesel fuel. These reductions are low and can be compensated by a slight increase in brake specific fuel consumption (Bsfc). For blends, Bsfcs were increased by 2.8%, 3.9% and 7.8% as average for B5, B20 and B50, respectively. Considerable reductions were recorded in PM and smoke emissions with the use of biodiesel. CO emissions also decreased for biodiesel blends while NOx and HC emissions increased. But the increases in HC emissions can be neglected as they have very low amounts for all test fuels. It can be concluded that the use of safflower oil biodiesel has beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel.  相似文献   

19.
In this study, effects of diesel-like fuel (DLF) on engine performance and exhaust emission are investigated experimentally. The DLF is produced from waste engine lubrication oil purified from dust, heavy carbon soot, metal particles, gum-type materials and other impurities. A fuel production system mainly consisting of a waste oil storage tank, filters, a reactor, oil pump, a product storage tank, thermostats and control panel is designed and manufactured. The DLF is produced by using the system and applying pyrolitic distillation method. Characteristics, performance and exhaust emissions tests of the produced DLF are carried out at the end of the production. The characteristic tests such as density, viscosity, flash point, heating value, sulfur content and distillation of the DLF sample are performed utilizing test equipments presented in motor laboratory of Mechanical Engineering Department, University of Gaziantep, Turkey. Performance and exhaust emission tests for the DLF are performed using diesel test engine. It is observed from the test results that about 60 cc out of each 100 cc of the waste oil are converted into the DLF. Characteristics and distillation temperatures of the DLF are close to those values of a typical diesel fuel sample. It is observed that the produced DLF can be used in diesel engines without any problem in terms of engine performance. The DLF increases torque, brake mean effective pressure, brake thermal efficiency and decreases brake specific fuel consumption of the engine for full power of operation.  相似文献   

20.
Depletion of fossils fuels and environmental degradation have prompted researchers throughout the world to search for a suitable alternative fuel for diesel engine. One such step is to utilize renewable fuels in diesel engines by partial or total replacement of diesel in dual fuel mode. In this study, acetylene gas has been considered as an alternative fuel for compression ignition engine, which has excellent combustion properties.Investigation has been carried out on a single cylinder, air cooled, direct injection (DI), compression ignition engine designed to develop the rated power output of 4.4 kW at 1500 rpm under variable load conditions, run on dual fuel mode with diesel as injected primary fuel and acetylene inducted as secondary gaseous fuel at various flow rates. Acetylene aspiration resulted in lower thermal efficiency. Smoke, HC and CO emissions reduced, when compared with baseline diesel operation. With acetylene induction, due to high combustion rates, NOx emission significantly increased. Peak pressure and maximum rate of pressure rise also increased in the dual fuel mode of operation due to higher flame speed. It is concluded that induction of acetylene can significantly reduce smoke, CO and HC emissions with a small penalty on efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号