首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental investigation on engine performance and exhaust emission of a gasoline engine fueled by Gasoline-Like Fuel (GLF) was performed in this study. The GLF was obtained from waste lubrication oil (WLO) using the pyrolitic distillation method. Firstly, the WLO collected in a tank was particulates removed by a refining process. The refined lubrication oil samples were taken into a reactor and blended with calcium oxide (CaO) 2, 4, 6, 8, and 10 wt.% to remove sulphur in the oil. The blended samples were heated in the reactor and then distilled to decrease sulphur and to produce fuel samples. Distillation tests and characteristics of the produced fuel such as density, flash point and lower heating value were examined. The experimental results indicated that the CaO at 2 wt.% had the highest effect on decreasing the amount of sulphur content in the lubrication oil. Fuels produced using 2 wt.% CaO were separated into two parts which were light fuel with 20 wt.% and heavy fuel with 60 wt.% of the total WLO. Remaining of the WLO is about 20 wt.%, which is rejected from the reactor. The light fuel, referred to as GLF and gasoline samples are used to investigate the effect of the GLF on performance and emissions of a 1300 cm3 spark ignited engine manufactured by Fiat. The engine used in the study has specifications of four-stroke and four cylinders, water cooled, fueled with carburetor and naturally aspirated. Each cylinder has a bore of 76 mm and a stroke of 71.5 mm. The experimental results showed that the GLF had a positive effect on brake power, brake thermal efficiency, mean effective pressure and specific fuel consumption. The GLF also raised CO emission and exhaust temperature, but it decreased hydrocarbon (HC) in the exhaust.  相似文献   

2.
In this study, effects of diesel-like fuel (DLF) on engine performance and exhaust emission are investigated experimentally. The DLF is produced from waste engine lubrication oil purified from dust, heavy carbon soot, metal particles, gum-type materials and other impurities. A fuel production system mainly consisting of a waste oil storage tank, filters, a reactor, oil pump, a product storage tank, thermostats and control panel is designed and manufactured. The DLF is produced by using the system and applying pyrolitic distillation method. Characteristics, performance and exhaust emissions tests of the produced DLF are carried out at the end of the production. The characteristic tests such as density, viscosity, flash point, heating value, sulfur content and distillation of the DLF sample are performed utilizing test equipments presented in motor laboratory of Mechanical Engineering Department, University of Gaziantep, Turkey. Performance and exhaust emission tests for the DLF are performed using diesel test engine. It is observed from the test results that about 60 cc out of each 100 cc of the waste oil are converted into the DLF. Characteristics and distillation temperatures of the DLF are close to those values of a typical diesel fuel sample. It is observed that the produced DLF can be used in diesel engines without any problem in terms of engine performance. The DLF increases torque, brake mean effective pressure, brake thermal efficiency and decreases brake specific fuel consumption of the engine for full power of operation.  相似文献   

3.
In this study, performance and exhaust emissions of biodiesel in a compression ignition engine was experimentally investigated. Therefore, biodiesel has been made by transesterification from cotton seed oil and then it was mixed with diesel fuel by 25% volumetrically, called here as B75 fuel. B75 fuel was tested, as alternative fuel, in a single cylinder, four strokes, and air-cooled diesel engine. The effect of B75 and diesel fuels on the engine power, engine torque and break specific fuel consumption were clarified by the performance tests. The influences of B75 fuel on CO, HC, NOx, Smoke opacity, CO2, and O2 emissions were investigated by emission tests. The engine torque and power, for B75 fuel, were lower than that of diesel fuel in range of 2-3%. However, for the B75, specific fuel consumption was higher than that of diesel fuel by approximately 3%. CO2, CO, HC, smoke opacity and NOx emissions of B75 fuel were lower than that of diesel fuel. The experimental results showed that B75 fuel can be substituted for the diesel fuel without any modifications in diesel engines.  相似文献   

4.
In present work the effects of nitromethane (NM) and nitroethane (NE) as nitrogenated additives on physical properties, combustion performance, and emission of diesel fuel, were studied. Nitrogenated additives have high oxygen content and are considered as oxygenated additives. These additives were blended with diesel fuel, in 1/9 volume ratio. The experimental study was carried out on ECE R-96 8-modes cycle. The result showed that the use of additives reduces viscosity but increases cetane index. In addition, nitrogenated additives increased brake thermal efficiency (BTE) while reduced certain exhaust emissions. Results of AVL SPC 472_MCE97 analysis showed that the addition of NE can reduce the overall smoke value by 44%. The smoke emission decreased at the maximum torque speed (1500 rpm) rather than at the rated power speed (2200 rpm).  相似文献   

5.
Ekrem Buyukkaya 《Fuel》2010,89(10):3099-3105
Experimental tests were investigated to evaluate the performance, emission and combustion of a diesel engine using neat rapeseed oil and its blends of 5%, 20% and 70%, and standard diesel fuel separately. The results indicate that the use of biodiesel produces lower smoke opacity (up to 60%), and higher brake specific fuel consumption (BSFC) (up to 11%) compared to diesel fuel. The measured CO emissions of B5 and B100 fuels were found to be 9% and 32% lower than that of the diesel fuel, respectively. The BSFC of biodiesel at the maximum torque and rated power conditions were found to be 8.5% and 8% higher than that of the diesel fuel, respectively. From the combustion analysis, it was found that ignition delay was shorter for neat rapeseed oil and its blends tested compared to that of standard diesel. The combustion characteristics of rapeseed oil and its diesel blends closely followed those of standard diesel.  相似文献   

6.
Experimental study has been carried out to investigate performance parameters, emissions, cylinder pressure, exhaust gas temperature (Texhaust) and engine wall temperatures (Twall) for direct injection diesel engine. Tests were conducted for sunflower oil (S100) and 20% jojoba oil + 80% pure diesel fuel (B20) in comparison to pure diesel fuel with different engine speeds. S100 and B20 were selected for the study because of its being widely used in Egypt and in the world. Also, series of tests are conducted at same previous conditions with different percentage of exhaust gas recirculation (EGR) from 0% to 12% of inlet mass of air fresh charge. Results indicate that S100 or B20 gives lower brake thermal efficiency (ηB), brake power (BP), brake mean effective pressure (BMEP), and higher brake specific fuel consumption (BSFC) due to lower heating value compared to pure diesel fuel. S100 or B20 gives lower NOX concentration due to lower gas temperature. S100 or B20 gives higher Twall and Texhaust due to incomplete combustion inside engine cylinder. S100 or B20 gives higher CO and CO2 concentrations due to higher carbon/hydrogen ratio. The position of maximum pressure (Pmax) change for pure diesel fuel is earlier than for S100 or B20. The results show that S100 or B20 are promising as alternative fuel for diesel engine. The utilization of vegetable oils does not require a significant modification of existing engines. This can be seen as the main advantage of vegetable oils. The main disadvantages of biodiesel fuels are high viscosity, drying with time, thickening in cold conditions, flow and atomization characteristics.  相似文献   

7.
The aim of this study is to investigate the effects of dimethyl ether (DME) fuel on the engine performance and the exhaust emission reduction characteristics in a DME fueled four-cylinder diesel engine with a common rail injection system, as well as an injection characteristics and a spray behavior. The injection rate meter and the spray visualization system are utilized for the analysis of the injection characteristics and the spray behavior. Also, the modified four-cylinder diesel engine with 1.6 liter engine size is used for the investigation of the engine performance and the exhaust emission reduction characteristics of DME fuel.Based on the experimental investigation, it revealed that the injection quantity of DME fuel was larger than that of the ultra low sulfur diesel (ULSD) due to the high return fuel pressure at the same injection pressure and energizing duration. In this case, the injection quantity of DME fuel is increased by extension of real injection duration due to return fuel pressure.In combustion characteristics, the peak combustion pressure and the ignition delay of DME fuel are higher and faster than those of ULSD, respectively. The NOx emission of DME fuel shows slightly higher than that of ULSD at the same engine load condition, and the soot emission of DME fuel is nearly zero level. The oxygenated component and volatility of DME resulted in HC and CO emissions that were lower than those of diesel.  相似文献   

8.
Lei Zhu  C.S. Cheung  W.G. Zhang 《Fuel》2011,90(5):1743-1750
In this study, Euro V diesel fuel, biodiesel, and ethanol-biodiesel blends (BE) were tested in a 4-cylinder direct-injection diesel engine to investigate the combustion, performance and emission characteristics of the engine under five engine loads at the maximum torque engine speed of 1800 rpm. The results indicate that when compared with biodiesel, the combustion characteristics of ethanol-biodiesel blends changed; the engine performance has improved slightly with 5% ethanol in biodiesel (BE5). In comparison with Euro V diesel fuel, the biodiesel and BE blends have higher brake thermal efficiency. On the whole, compared with Euro V diesel fuel, the BE blends could lead to reduction of both NOx and particulate emissions of the diesel engine. The effectiveness of NOx and particulate reductions increases with increasing ethanol in the blends. With high percentage of ethanol in the BE blends, the HC, CO emissions could increase. But the use of BE5 could reduce the HC and CO emissions as well.  相似文献   

9.
Su Han Park  Chang Sik Lee 《Fuel》2011,90(2):748-755
The aim of this work is to investigate the effect of ethanol blending to diesel fuel on the combustion and exhaust emission characteristics of a four-cylinder diesel engine with a common-rail injection system. The overall spray characteristics, such as the spray tip penetration and the spray cone angle, were studied with respect to the ethanol blending ratio. A spray visualization system and a four-cylinder diesel engine equipped with a combustion and emission analyzer were utilized so as to analyze the spray and exhaust emission characteristics of the ethanol blending diesel fuel. Ethanol blended diesel fuel has a shorter spray tip penetration when compared to pure diesel fuel. In addition, the spray cone angle of ethanol blended fuels is larger. It is believed that the lower fuel density of ethanol blended fuels affects the spray characteristics. When the ethanol blended fuels are injected around top dead center (TDC), they exhibit unstable ignition characteristics because the higher ethanol blending ratio causes a long ignition delay. An advance in the injection timing also induces an increase in the combustion pressure due to the sufficient premixed duration. In a four-cylinder diesel engine, an increase in the ethanol blending ratio leads to a decrease in NOx emissions due to the high heat of evaporation of ethanol fuel, however, CO and HC emissions increase. In addition, the CO and HC emissions exhibit a decreasing trend according to an increase in the engine load and an advance in the injection timing.  相似文献   

10.
Cenk Sayin 《Fuel》2010,89(11):3410-3415
In this study, the effects of methanol-diesel (M5, M10) and ethanol-diesel (E5, E10) fuel blends on the performance and exhaust emissions were experimentally investigated. For this work, a single cylinder, four-stroke, direct injection, naturally aspirated diesel engine was used. The tests were performed by varying the engine speed between 1000 and 1800 rpm while keeping the engine torque at 30 Nm. The results showed that brake specific fuel consumption and emissions of nitrogen oxides increased while brake thermal efficiency, smoke opacity, emissions of carbon monoxide and total hydrocarbon decreased with methanol-diesel and ethanol-diesel fuel blends.  相似文献   

11.
The use of biodiesel as a substitute for petroleum-based diesel has become of great interest for the reasons of combating the destruction of the environment, the price of petroleum-based diesel and dependency on foreign energy sources. But for practical feasibility of biodiesel, antioxidants are added to increase the oxidation stability during long term storage. It is quite possible that these additives may affect the clean burning characteristics of biodiesel. This study investigated the experimental effects of antioxidants on the oxidation stability, engine performance, exhaust emissions and combustion characteristics of a four cylinder turbocharged direct injection (TDI) diesel engine fuelled with biodiesel from croton megalocarpus oil. The three synthetic antioxidants evaluated its effectiveness on oxidation stability of croton oil methyl ester (COME) were 1, 2, 3 tri-hydroxy benzene (Pyrogallol, PY), 3, 4, 5-tri hydroxy benzoic acid (Propyl Gallate, PG) and 2-tert butyl-4-methoxy phenol (Butylated Hydroxyanisole, BHA). The fuel sample tested in TDI diesel engine include pure croton biodiesel (B100), croton biodiesel dosed with 1000 ppm of an effective antioxidant (B100 + PY1000), B20 (20% croton biodiesel and 80% mineral diesel) and diesel fuel which was used as base fuel. The result showed that the effectiveness of the antioxidants was in the order of PY > PG > BHA. The brake specific fuel consumption (BSFC) of biodiesel fuel with antioxidants decreased more than that of biodiesel fuel without antioxidants, but both were higher than that of diesel. Antioxidants had few effects on the exhaust emissions of a diesel engine running on biodiesel. Combustion characteristics in diesel engine were not influenced by the addition of antioxidants in biodiesel fuel. This study recommends PY and PG to be used for safeguarding biodiesel fuel from the effects of autoxidation during storage. Overall, the biodiesel derived from croton megalocarpus oil can be utilized as partial substitute for mineral diesel.  相似文献   

12.
In this study, effects of variation in volumetric efficiency on the engine emissions characteristics with different LPG usage levels (25%, 50%, 75%, and 100%), on an engine operated with new generation closed loop, multi-point, and sequential gas injection system were investigated. For this purpose, experiments were carried out under constant engine speed (3800 rpm) and different load (5%, 30%, 60%, 90%) conditions. The variations in volumetric efficiency, air-fuel ratio, brake thermal efficiency, brake specific fuel consumption, brake specific energy consumption, and exhaust gasses were examined. The volumetric efficiency decreased considerably at the use of 25% LPG level. As for the 50%, 75% and 100% LPG usage, volumetric efficiency decreased in proportion to LPG usage level. Air-fuel ratio decreases with the increase in LPG usage level and the minimum air-fuel ratio value was obtained at 100% LPG usage. At the use of mixture containing 25% LPG, brake specific fuel and energy consumption decreased while the brake thermal efficiency was maintained. Positive results were obtained at all LPG usage levels in terms of exhaust emissions. Best results were achieved at using 100% LPG for exhaust emissions.  相似文献   

13.
Decoupling cetane number from the other compositions and properties of diesel fuel, the individual effect of cetane number on the exhaust emissions from an engine may be researched. This paper has presented a back-propagation neural network model predicting the exhaust emissions from an engine with the inputs of total cetane number, base cetane number and cetane improver, total cetane number and nitrogen content in the diesel fuel; as well as the output of the exhaust emissions of hydrocarbon (HC), carbon oxide (CO), particulate matter (PM) and nitrogen oxide (NOx). An optimal design has been completed for the number of hidden layers, the number of hidden neurons, the activation function, and the goal errors, along with the initial weights and biases in the back-propagation neural network model. HC, CO, PM and NOx have been predicted with the model, the effects of cetane improver and nitrogen content on them have also been analyzed, and better results have been achieved.  相似文献   

14.
Cherng-Yuan Lin  Hsiu-An Lin 《Fuel》2006,85(3):298-305
Biodiesel is an alternative fuel that is cleaner than petrodiesel. Biodiesel can be used directly as fuel for a diesel engine without having to modify the engine system. It has the major advantages of having high biodegradability, excellent lubricity and no sulfur content. In this study, the biodiesel produced by a transesterification technique was further reacted by using a peroxidation process. Four types of diesel fuel, biodiesel with and without an additional peroxidation process, a commercial biodiesel and ASTM No. 2D diesel were compared for their fuel properties, engine performance and emission characteristics. The experimental results show that the fuel consumption rate, brake thermal efficiency, equivalence ratio, and exhaust gas temperature increased while the bsfc, emission indices of CO2, CO and NOx decreased with an increase of engine speed. The three biodiesels showed a higher fuel consumption rate, bsfc, and brake thermal efficiency, while at the same time exhibited lower emission indices of CO and CO2 as well as a lower exhaust gas temperature when compared to ASTM No. 2D diesel. Moreover, the biodiesel produced with the additional peroxidation process was found to have an oxygen content, weight proportion of saturated carbon bonds, fuel consumption rate, and bsfc that were higher than the biodiesel produced without the additional process; while at the same time the brake thermal efficiency, equivalence ratio, and emission indices of CO2, CO and NOx were found to be lower. In particular, biodiesel produced with the addition of the peroxidation process had the lowest equivalence ratio and emission indices of CO2, CO and NOx among all of the four test fuels. Therefore, the peroxidation process can be used to effectively improve the fuel properties and reduce emissions when biodiesel is used.  相似文献   

15.
An experimental investigation was performed to study the influence of dual-fuel combustion characteristics on the exhaust emissions and combustion performance in a diesel engine fueled with biogas-biodiesel dual-fuel. In this work, the combustion pressure and the rate of heat release were evaluated under various conditions in order to analyze the combustion and emission characteristics for single-fuel (diesel and biodiesel) and dual-fuel (biogas-diesel and biogas-biodiesel) combustion modes in a diesel engine. In addition, to compare the engine performances and exhaust emission characteristics with combustion mode, fuel consumption, exhaust gas temperature, efficiency, and exhaust emissions were also investigated under various test conditions. For the dual-fuel system, the intake system of the test engine was modified to convert into biogas and biodiesel of a dual-fueled combustion engine. Biogas was injected during the intake process by two electronically controlled gas injectors, which were installed in the intake pipe.The results of this study showed that the combustion characteristics of single-fuel combustion for biodiesel and diesel indicated the similar patterns at various engine loads. In dual-fuel mode, the peak pressure and heat release for biogas-biodiesel were slightly lower compared to biogas-diesel at low load. At 60% load, biogas-biodiesel combustion exhibited the slightly higher peak pressure, rate of heat release (ROHR) and indicated mean effective pressure (IMEP) than those of diesel. Also, the ignition delay for biogas-biodiesel indicated shortened trends compared to ULSD dual-fueling due to the higher cetane number (CN) of biodiesel. Significantly lower NOx emissions were emitted under dual-fuel operation for both cases of pilot fuels compared to single-fuel mode at all engine load conditions. Also, biogas-biodiesel provided superior performance in reductions of soot emissions due to the absence of aromatics, the low sulfur, and oxygen contents for biodiesel.  相似文献   

16.
Biodiesel, which is produced from vegetable oils, animal fats or used cooking oils, can be used as an alternative fuel for diesel engines. The high oxygen content of biodiesel not only enhances its burning efficiency, but also generally promotes the formation of more nitrogen oxides (NOx) during the burning process. Fuel emulsification and the use of NOx inhibitor agents in fuel are considered to be effective in reducing NOx emissions. In the study reported herein, soybean oil was used as raw oil to produce biodiesel by transesterification reaction accompanied by peroxidation to further improve the fuel properties of the biodiesel, which was water washed and distilled to remove un-reacted methanol, water, and other impurities. The biodiesel product was then emulsified with distilled water and emulsifying surfactant by a high-speed mechanical homogenizer to produce a three-phase oil-droplets-in-water-droplets-in-oil (i.e. O/W/O) biodiesel emulsion and an O/W/O emulsion that contained aqueous ammonia, which is a NOx inhibitor agent. A four-stroke diesel engine, in combination with an eddy-current dynamometer, was used to investigate the engine performance and emission characteristics of the biodiesel, the O/W/O biodiesel emulsion, the O/W/O biodiesel emulsion that contained aqueous ammonia, and ASTM No. 2D diesel. The experimental results show that the O/W/O emulsion has the lowest carbon dioxide (CO2) emissions, exhaust gas temperature, and heating value, and the largest brake specific fuel consumption, fuel consumption rate, and kinematic viscosity of the four tested fuels. The increase of engine speed causes the increase of equivalence ratio, exhaust gas temperature, CO2 emissions, fuel consumption rate, and brake specific fuel consumption, but a decrease of NOx emissions. Moreover, the existence of aqueous ammonia in the O/W/O biodiesel emulsion curtails NOx formation, thus resulting in the lowest NOx emissions among the four tested fuels in burning the O/W/O biodiesel emulsion that contained aqueous ammonia.  相似文献   

17.
T. Leevijit  G. Prateepchaikul 《Fuel》2011,90(4):1487-1491
The performance and emissions of an indirect injection (IDI)-turbo automobile diesel engine operated with diesel and blends of degummed-deacidified mixed crude palm oil in diesel at portions of 20, 30, and 40 vol.% are examined and compared at various loads and speeds. Although fuel properties of the tested blends do not exactly meet all regulations of Thailand, they are all able to operate the engine. Comparing this with diesel, especially at full loads, shows that all blends produce the same maximum brake torque and power. A higher blending portion results in a little higher brake specific fuel consumption (+4.3% to +7.6%), a slightly lower brake thermal efficiency (-3.0% to -5.2%), a slightly lower exhaust gas temperature (−2.7% to −3.4%), and a significantly lower amount of black smoke (−30% to −45%). The level of carbon monoxide from the 20 vol.% blend is significantly lower (−70%), and the levels of nitrogen oxides from all blends are little higher.  相似文献   

18.
A well-designed CFBC can burn coal with high efficiency and within acceptable levels of gaseous emissions. In this theoretical study effects of operational parameters on combustion efficiency and the pollutants emitted have been estimated using a developed dynamic 2D (two-dimensional) model for CFBCs. Model simulations have been carried out to examine the effect of different operational parameters such as excess air and gas inlet pressure and coal particle size on bed temperature, the overall CO, NOx and SO2 emissions and combustion efficiency from a small-scale CFBC. It has been observed that increasing excess air ratio causes fluidized bed temperature decrease and CO emission increase. Coal particle size has more significant effect on CO emissions than the gas inlet pressure at the entrance to fluidized bed. Increasing excess air ratio leads to decreasing SO2 and NOx emissions. The gas inlet pressure at the entrance to fluidized bed has a more significant effect on NOx emission than the coal particle size. Increasing excess air causes decreasing combustion efficiency. The gas inlet pressure has more pronounced effect on combustion efficiency than the coal particle size, particularly at higher excess air ratios. The developed model is also validated in terms of combustion efficiency with experimental literature data obtained from 300 kW laboratory scale test unit. The present theoretical study also confirms that CFB combustion allows clean and efficient combustion of coal.  相似文献   

19.
Experiments were conducted to study the performance, emission and combustion characteristics of a DI diesel engine using poon oil-based fuels. In the present work, poon oil and poon oil methyl ester are tested as diesel fuels in Neat and blended forms. The blends were prepared with 20% poon oil and 40% poon oil methyl ester separately with standard diesel on a volume basis. The reductions in smoke, hydrocarbon and CO emissions were observed for poon oil methyl ester and its diesel blend along with increased NOx emission compared to those of standard diesel. However, a reduction in NOx emission and an increase in smoke, hydrocarbon and CO emissions were observed for Neat poon oil and its diesel blend compared to those of standard diesel. The 40% poon oil methyl ester blend showed a 2% increase in brake thermal efficiency compared to that of standard diesel, whereas other fuels tested showed a decreasing trend. From the combustion analysis it was found that ignition delay was shorter for all fuels tested compared to that of standard diesel. The combustion characteristics of poon oil methyl ester and its diesel blend closely followed those of standard diesel.  相似文献   

20.
Seokhwan Lee 《Fuel》2011,90(4):1674-1680
In this study, a spark ignition engine operated with DME-blended LPG fuel was studied experimentally. In particular, the effect of n-Butane and propane on performance, emissions characteristics (including hydrocarbon, CO, and NOx), and the combustion stability of an SI engine fuelled with DME-blended LPG fuel were examined. Four kinds of test fuel with different blend ratios of n-Butane, propane, and DME were used. The percentage of DME in the fuel blend was 20% by mass.The results showed that stable engine operation was possible for a wide range of engine loads with propane containing LPG/DME-blended fuel rather than n-Butane containing LPG/DME-blended fuel since the octane number of propane is higher than that of n-Butane. Also, engine power output, break specific fuel consumption (BSFC), and combustion stability when operating with propane containing DME-blended fuel were comparable to those values in case of pure LPG fuel operation. Engine power output was decreased and BSFC was increased with n-Butane containing DME-blended fuel due to the lower energy density of DME. To examine the effect of n-Butane and propane on emissions and fuel economy in an actual vehicle, a vehicle was tested during an FTP-75 cycle. Through the emission and fuel economy test in the FTP-75 cycle, we conclude that the differences in emission level and fuel economy were not significant according to the blend of n-Butane, propane, and DME.Considering the experimental results from the engine bench and the actual vehicle, the 20% content of DME-blended fuel, regardless of LPG type, can be used as an alternative fuel for LPG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号