首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strict interpretation of ASTM C 618 excludes non-coal fly ashes, such as biomass fly ashes from addition in concrete. Biomass fly ash in this investigation includes (1) cofired fly ash from burning biomass with coal; (2) wood fly ash and (3) blended fly ash (wood fly ash mixing with coal fly ash). A set of experiments conducted on concrete from pure cement and cement with fly ash provide basic data to assess the effects of several biomass fly ashes on the performances of freezing and thawing (F-T) and rapid chloride permeability test (RCPT). The F-T tests indicate that all fly ash concrete has statistically equal or less weight loss than the pure cement concrete (control). The RCPT illustrate that all kinds of fly ash concrete have lower chloride permeability than the pure cement control concrete.  相似文献   

2.
Biomass fly ash in concrete: SEM, EDX and ESEM analysis   总被引:1,自引:0,他引:1  
This document summarizes microscopy study of concrete prepared from cement and fly ash (25% fly ash and 75% cement by weight), which covers coal fly ash and biomass fly ash. All the fly ash concrete has the statistical equal strength from one day to one year after mix. Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX) and environmental scanning electron microscopy (ESEM) analysis show that both coal and biomass fly ash particles undergo significant changes of morphology and chemical compositions in concrete due to pozzolanic reaction, although biomass fly ash differs substantially from coal fly ash in its fuel resources.  相似文献   

3.
S. Arvelakis  F.J. Frandsen 《Fuel》2010,89(10):3132-3140
The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of various coal/biomass blends in a pilot scale pf-boiler. The produced data provide information on the melting of the ash and its flow characteristics, as a function of temperature, which may be used to modify the temperature profile of the boiler in order to avoid slagging. Straw co-firing lowers the ash viscosity leading to higher stickiness of the ash particles. Wood co-firing has only minor effects, due to the composition of wood ash and the low percentage of wood in the coal/biomass blend.  相似文献   

4.
The (co)-firing of low-cost alternative fuels is expected to increase in the forthcoming years in the EU because of the economic and environmental benefits provided by this technology. This study deals with the impact of the different coal/waste fuel ratio of the feed blend on the mineralogy, the chemical composition and especially on the leaching properties of fly ash. Different blends of coal, petroleum coke, sewage sludge, wood pellets, coal tailings and other minor biomass fuels were tested in PCC (pulverised coal combustion) and FBC (fluidized bed combustion) power plants. The co-firing of the studied blends did not drastically modify the mineralogy, bulk composition or the overall leaching of the fly ash obtained. This suggests that the co-firing process using the alternative fuels studied does not entail significant limitations in the re-use or management strategies of fly ash.  相似文献   

5.
《Fuel》2007,86(7-8):1008-1020
Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw and coal co-firing. Reasonable agreement in fly ash compositions regarding total K and fraction of water soluble K was obtained between co-firing in an entrained flow reactor and full-scale plants. Capture of potassium and subsequent release of HCl can be achieved by sulphation with SO2 and more importantly, by reaction with Al and Si in the fly ash. About 70–80% K in the fly ash appears as alumina silicates while the remainder K is mainly present as sulphate. Lignite/straw co-firing produces fly ash with relatively high Cl content. This is probably because of the high content of calcium and magnesium in lignite reacts with silica so it is not available for reaction with potassium chloride. Reduction of Cl and increase of S in the deposits compared to the fly ashes could be attributed to sulphation of the deposits.  相似文献   

6.
《Fuel》2006,85(12-13):1944-1949
High-volume fly ash (HVFA) concrete is an economical and durable option for structural as well as general concreting purposes, if properly controlled ashes are employed. The aim of this study was to investigate the possibility of the use of three types of Turkish fly ashes from different sources in cost effective high-volume fly ash concrete production. For this purpose HVFA concrete mixtures were prepared by substituting 40, 50, 60 and 70% of cement by fly ash. The mechanical properties and material costs of mixtures were compared with conventional concrete at the same strength grade at 28 days. It should be noted that as an additional benefit, the long-term strength development and durability advantageous of HVFA concrete is not taken into consideration in cost analysis. Results showed that for structural applications a technically suitable and cost effective HVFA concrete can only be produced by using the fly ashes within the limits of specific chemical and physical properties. It may be possible to use other fly ashes with rehabilitation and pre-process, which may reduce the economical feasibility of fly ash usage.  相似文献   

7.
借助差示扫描量热分析仪对煤与高硫石油焦混烧排放的CFBC(循环流化床)脱硫灰的残留碳含量进行了测定,研究表明:(1)CFBC脱硫灰的热反应过程主要分为水分和挥发分逸出,碳氧化和矿物分解及继续反应等三个阶段.(2)是否含有氢氧钙石对CFBC脱硫灰的热反应过程影响很大,含有氢氧钙石的CFBC脱硫灰在碳氧化和矿物分解阶段(约...  相似文献   

8.
张世华 《硅酸盐通报》2018,37(1):210-214
采用石灰石粉对低品位粉煤灰进行煅烧改性,利用X射线衍射、扫描电镜和能谱分析等方法对改性粉煤灰的矿物组成和化学组成进行表征.同时测定了掺改性粉煤灰的水泥浆体的抗压强度和自收缩,并采用背散射扫描电镜和压汞测孔仪研究了掺改性粉煤灰水泥浆体的微观结构.结果表明,粉煤灰经煅烧改性生成了水硬性矿物β-C2S,水化可生成CSH凝胶,改善了等外粉煤灰颗粒与水泥基体的界面粘接,降低了复合水泥浆体的孔隙率和自收缩,提高了复合水泥浆体的强度.  相似文献   

9.
Co-firing of biomass with pulverised coal at existing coal power stations remains a practical option available to power plant operators and is being widely adopted as one of the main technologies for reducing greenhouse gas emissions. However, there is a range of technological problems that are not well understood. This paper presents experimental investigations into the co-firing of pulverised coal directly co-milled with 5–20% biomass on a 3 MWth Combustion Test Facility. A number of combustion parameters, including flame temperature and oscillation frequency and particle size distribution, were measured under a range of co-firing conditions. The gas species within the flame and fly ash in flue gas were also sampled and analysed. The experimental data collected are used to study the impact of biomass additions to pulverised coal on the combustion characteristics of the co-firing process. The relationships between the flame characteristics, gas species and ash deposition of the furnace are investigated. The results suggest that, due to the varying physical and chemical properties of the biomass fuels, the biomass additions have impact on the combustion characteristics in a very complicated way. It has been found that the biomass addition to coal would improve the combustion efficiency because of the lower CO concentrations and higher char burnout level in co-firing. In addition, NOx emission has been found closely linked to the flame stability, and SOx emission reduced in general for all co-firing cases.  相似文献   

10.
MSWI ashes as mineral additions in concrete   总被引:1,自引:0,他引:1  
The paper describes the results of a research aimed at studying the effect of replacing part of portland cement with fly ash and bottom ash, both from municipal solid waste incinerators (MSWIs). Fly ash was subjected to a washing treatment to reduce the chloride content, while bottom ash was subjected to dry or wet grinding underwater. Concretes with addition of different types of ashes, including a traditional coal fly ash (FA), were manufactured. Fresh and hardened properties of the concretes were compared in order to study the advantages and the side effects of each type of addition. Results showed that MSWI bottom ash is potentially attractive as mineral addition for the production of concrete, provided that the risk of entrapment of hydrogen bubbles produced by corrosion of aluminium metallic particles in the fresh concrete is prevented. This could be achieved by wet grinding the bottom ash so that reactions leading to gas development exhaust within the slurry before this is added to the concrete mixture. However, by considering bottom ashes from different incinerators, a great variability was observed in the time required to complete the hydrogen gas production. Nevertheless, when the hydrogen development in the fresh concrete could be avoided, wet ground MSWI bottom showed a good pozzolanic behavior and proved to give a significant contribution to the development of the strength and impermeability of concrete.  相似文献   

11.
Blended cements prepared with two fly ashes were used as matrices in glass fiber reinforced cement (GRC) composites in an attempt to improve their durability. The hydrated matrices from the two blended cements investigated here had similar strength and composition. Both fly ashes reduced the Ca(OH)2 content to the same extent but in both cases the pH level was only slightly reduced compared to the portland cement matrix. In spite of these similarities, the GRC prepared with one fly ash showed considerable improvement in durability while the other one had only a small positive effect. SEM observations indicated that the improved durability in one case was associated with modification in the microstructure of the hydration products deposited in between the glass filaments, resulting in a much more open structure compared to that of portland cement matrix or the other blended cement. It is therefore suggested that the potential of the blended cement matrix to improve the durability of GRC is associated with its ability to modify the microstructure of the paste at the glass interface. This characteristic is not necessarily related to the overall composition of the blended cement matrix and to the reactivity of fly ash with Ca(OH)2.  相似文献   

12.
《Ceramics International》2015,41(4):5945-5958
This paper presents the results of an experimental study on the behavior of fly ash-, bottom ash- and blended fly and bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. A total of 10 bathes of GPC and a single batch of ordinary Portland cement concrete (OPC) were manufactured. The tests of compressive strength, elastic modulus, flexural strength, workability, drying shrinkage and absorption capacity were carried out to determine the properties of fresh concrete and mechanical and durability-related properties of hardened concrete. Test parameters included the mass ratio of fly ash-to-bottom ash, liquid alkaline-to-coal ash binder ratio, coal ash content and concrete type. The results indicate that the selected parameters significantly affect the microstructure and the behavior of GPCs. It is seen that bottom ash-based GPCs exhibited significantly lower geopolymerization than that of the fly ash-based GPCs, resulting in the inferior behavior of the former compared to the latter.  相似文献   

13.
P. Abreu  C. Casaca  M. Costa 《Fuel》2010,89(12):4040-4048
This article describes an experimental study on ash deposition during the co-firing of bituminous coal with pine sawdust and olive stones in a laboratory furnace. The main objective of this study was to relate the ash deposit rates with the type of biomass burned and its thermal percentage in the blend. The thermal percentage of biomass in the blend was varied between 10% and 50% for both sawdust and olive stones. For comparison purposes, tests have also been performed using only coal or only biomass. During the tests, deposits were collected with the aid of an air-cooled deposition probe placed far from the flame region, where the mean gas temperature was around 640 °C. A number of deposit samples were subsequently analyzed on a scanning electron microscope equipped with an energy dispersive X-ray detector. Results indicate that blending sawdust with coal decreases the deposition rate as compared with the firing of unblended coal due to both the sawdust low ash content and its low alkalis content. The co-firing of coal and sawdust yields deposits with high levels of silicon and aluminium which indicates the presence of ashes with high fusion temperature and, thus, with less capacity to adhere to the surfaces. In contrast, in the co-firing of coal with olive stones the deposition rate increases as compared with the firing of unblended coal and the deposits produced present high levels of potassium, which tend to increase their stickiness.  相似文献   

14.
周州  李辉  李雪晨 《硅酸盐通报》2017,36(9):3192-3196
以烧结粉煤灰陶粒作为粗骨料,复掺超细粉煤灰与一级粉煤灰部分替代水泥作为胶凝材料,制备轻质高强混凝土.主要研究了两种粉煤灰的掺配比例与总掺量对轻骨料混凝土力学性能、干表观密度及微观形貌的影响.试验结果表明:掺超细粉煤灰能够细化水泥水化产物的晶体尺寸,打乱氢氧化钙的生长取向,减少混凝土内部结构缺陷,使胶凝材料浆体更均匀;当超细粉煤灰与一级粉煤灰的比例为1:1,粉煤灰的总掺量为40%时,可以配制出28 d抗压强度为58.6 MPa,干表观密度为1900 kg/m3的LC50轻质高强轻骨料混凝土.  相似文献   

15.
The scope of this paper includes the development of a modelling approach to predict the ash release behaviour and chemical composition of inorganics during co-firing of coal and biomass. In the present work, an advanced analytical method was developed and introduced to determine the speciation of biomass using pH extraction analysis. Biomass samples considered for the study include wood chips, wood bark and straw. The speciation data was used as an input to the chemical speciation model to predict the behaviour and release of ash. It was found that the main gaseous species formed during the combustion of biomass are KCl, NaCl, K2SO4 and Na2SO4. Calculations of gas-to-particle formation were also carried out to determine the chemical composition of coal and biomass during cooling which takes place in the boiler. It was found that the heterogeneous condensation occurring on heat exchange surfaces of boilers is much more than homogeneous condensation. Preliminary studies of interaction between coal and biomass during ash formation process showed that Al, Si and S elements in coal may have a ‘buffering’ effect on biomass alkali metals, thus reducing the release of alkali–gases which act as precursors to ash deposition and corrosion during co-firing. The results obtained in this work are considered to be valuable and form the basis for accurately determining the ash deposition during co-firing.  相似文献   

16.
Osvalda Senneca 《Fuel》2008,87(15-16):3262-3270
A most interesting solution for the disposal of meat and bone meal (MBM) is co-feeding with coal in combustion plants. MBM, is however, quite different from any other traditional or alternative solid fuel in terms of chemical composition, ash content and microstructural properties. Its effects on the performance of a boiler are largely unexplored. The present paper addresses the characteristics of MBM as alternative solid fuel and the effects of co-feeding MBM (6%) and coal (94%) in a utility boiler.A first activity consisted in the characterisation of the physico-chemical properties and the reactivity of MBM. The experimental campaign included ultimate and proximate analysis, granulometric analysis, ICP, SEM, XRD. An extensive campaign of isothermal and non isothermal thermogravimetric experiments was carried out to assess the reactivity of MBM upon pyrolysis, combustion and gasification and to obtain appropriate kinetic expressions.A second activity focused on co-firing of MBM and coal. Bottom and fly ashes were collected from an industrial boiler operated with MBM and coal. Ash samples were characterised by SEM, XRD, ICP, TGA and granulometric analysis. Results of this activity showed that MBM contributes mostly to bottom ash, however also the fly ashes are different from those typically encountered when the boiler is operated with coal alone. Differences concern the chemical composition and particle size distribution of ashes, in particular a large population of very fine particles characterised by perfectly spherical shape and non negligible carbon content is observed.  相似文献   

17.
我国煤矿生产事故频发,顶板垮落、瓦斯爆炸、机电事故、突水、矿井火灾、放炮等隐患时刻影响着煤矿安全生产,当前矿井开采以井下开采为主,井下开采存在技术要求高、开采难度大的问题,导致煤矿事故发生数和死亡人数相对其他行业居于首位。因此,为改善煤矿事故发生情况,提高煤矿安全生产,将粉煤灰应用到煤矿生产中,替代部分水泥,降低成本,降低混凝土水化热及渗透性,提高灌注混凝土工作性与耐久性。通过试验验证表明:采用Ⅰ级粉煤灰的混凝土较采用Ⅱ级粉煤灰的混凝土抗压强度、轴拉强度和极限拉伸值均略高,且干缩率较低,掺加Ⅱ级粉煤灰的混凝土的抗冻性能优于掺加I级粉煤灰的混凝土,I级粉煤灰对混凝土抗冻性能负面影响严重。同强度等级、同水胶比条件下,Ⅰ级粉煤灰混凝土抗冲磨强度比Ⅱ级粉煤灰混凝土抗冲磨强度及抗水冲蚀能力稍高,对预防及应对煤矿安全问题具有重要意义。  相似文献   

18.
Aiming at investigating the influence of minerals in co-firing applications in existing and developing systems, as well as their environmental impact upon recycling to soils, we used a combination of techniques such as X-ray fluorescence spectroscopy, ultraviolet and visible spectroscopy, inductive coupled plasma spectroscopy, X-ray diffractometry, differential thermal analysis and fusibility analysis to characterize various biomass and coal ashes and their blends, with biomass proportions up to 20%. Slagging and fouling propensities were predicted.The results showed that biomass ashes were richer in calcium, silicon and alkali minerals and micronutrients such as Zn, Cu and Mn, in comparison to coal ashes. Some could be useful for soil amendment or the cement industry. Slagging/fouling problems should be expected in boilers operating above 1000 °C, especially those firing cotton residue, vine shoots and bituminous coal without pre-treatment. However, the environmental impact of either biomass or coal ashes upon their disposal is expected to be very low, as leaching tests have shown. For coal/biomass blends, the composition and the fusibility of the ashes varied between those of the individual components. Thus co-firing processes using the alternative fuels studied up to 20% would not entail significant limitations in the system operation or the management strategies of ashes.  相似文献   

19.
Sunflower-seed hulls (SSH) represent a source of combustible biomass characterised by high contents of potassium and phosphorus and a low silica content. The relatively high net calorific value of 20 MJ/kg d.m. is mainly influenced by the lignin content. Potassium and phosphorus are very important elements in biomass combustion for fuel, influencing slagging and fouling problems. Mixtures with different ratios of brown coal and sunflower-seed hulls (0-22% SSH) were co-fired in the Olomouc power plant. The behaviour of elements in the fly ash and the bottom ash (SiO2, Al2O3, K2O, P2O5, Zn, Cu and Cd) varied in relation to the amount of SSH added to the coal. The fly ash from the co-firing of 20% SSH with coal had a high content of water-leachable sulphates and total dissolved solids. The utilisation of fly ash in civil engineering (land reclamation) should fulfil criteria established by the Council Decision 2003/33/EC for non-hazardous waste. To ensure that the required water-leachable sulphate concentrations are within regulatory limits the fuel may contain a maximum of 14% SSH.  相似文献   

20.
The use of fly ash to replace a portion of cement has resulted significant savings in the cost of cement production. Fly ash blended cement concretes require a longer curing time and their early strength is low when compared to ordinary Portland cement (OPC) concrete. By adopting various activation techniques such as physical, thermal and chemical methods, hydration of fly ash blended cement concrete was accelerated and thereby improved the corrosion-resistance of concrete. Concrete specimens prepared with 10-40% of activated fly ash replacement were evaluated for their open circuit potential measurements, weight loss measurements, impedance measurements, linear polarization measurements, water absorption test, rapid chloride ion penetration test and scanning electron microscopy (SEM) test and the results were compared with those for OPC concrete without fly ash. All the studies confirmed that up to a critical level of 20-30% replacement; activated fly ash cement improved the corrosion-resistance properties of concrete. It was also confirmed that the chemical activation of fly ash yielded better results than the other methods of activation investigated in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号